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PREFACE 

The material of this %~lume results from a set of lectures given at the Einstein 

Centenary Stumner School held in Perth, Western Austr~ia during January, 1979. The 

School was arranged with the purpose of bringing together scientists who, in the pur- 

suit of their normal activities, have only infrequent opportunity to share perspect- 

ives ... the theoretical physicists and mathemeticians concerned primarily with the 

predictions of Einstein's General Relativity in the context of collapsed or collapsing 

stellarobjects ... the astronomers and astrophysicists expert not only in the retrie- 

val of information from these collapsing systems, but also in its incorporation into 

physical models ... and finally, experimental physicists intent at present chiefly on 

the forbidding task of constructing their gravitational wave detectors, but who hope 

ultimately to make a significant contribution to our understanding of the process of 

gravitational collapse. This diversity of experience, contrasting, as it did, the 

underlying unity of interest of these three groups, proved to be an essential ingred- 

ient in the success of the School. 

The School was conceived as a joint venture between the University of Western 

Australia and the University of Rome, and owes much to the enthusiasm of R. Ruffini. 

His lectures to the School, which were of a general nature, are not however reproduced 

here. Some of the ideas hinted at during these lectures, and pursued in subsequent re- 

search, are scheduled for publication in Physiu8 Letter8 (with Ferreirinho and Stella), 

and in Lettere al Nuovo C~ento (with Stella and Wilson). With this exception, all of 

the lectures given at the meeting are represented in this volume, either in the form 

of single articles covering two or three lectures, or in a one-to-one correspondence. 

Where several authors are involved, the one responsible for presenting the work at the 

School is indicated by an asterisk. Since the original manuscripts have all been re- 

typed, I must accept responsibility for any errors in transcription which may have 

crept in. 

Finally I wish to express my gratitude to Sue, Sharon and Polly for their inval- 

uable help, first with the trying tasks of raising funds for the School, and later for 

typing these lectures. 

Cyril Edwards 
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INTRODUCTION 

The discovery of pulsars in 1967 [i], their identification as remnants of the 

processes of gravitational collapse [2] and the discovery in 1971 of binary X-ray 

sources [3] have all given clear evidence that regimes in which general relativistic 

effects are significant do exist within our own galaxy. The Einstein theory of gravi- 

tation has grown from being an extremely elegant theoretical framework with enormous 

mathematical difficulties, but minimal observable effect, to be the cornerstone of 

relativistic astrophysics. In the very early days of relativity, Einstein had given 

evidence [4] that as an outcome of the field equations of general relativity, neces- 

sarily, gravitational waves have to exist in nature. He himself pointed out the dif- 

ficulty of generating or detecting this radiation, due to the weakness of the gravit- 

ational couplingconstant. Nevertheless it is quite clear that an observable impulse 

of gravitational radiation should be expected from the process of gravitational coll- 

apse itself, and that radiation damping may be a significant mechanism in certain bin- 

ary systems [5]. 

It is most appropriate that, thanks to the great developments of radio astronomy, 

it was possible this year to give the first evidence for the existence in nature of 

gravitational waves. This unique discovery, resulting from observations made at 

Arecibo by J. Taylor, R. Hulse, L. A. Fowler and P. McCulloch, has been made possible 

by the discovery of a binary system of stars PSR 1913 + 16 formed, very likely, by two 

neutron stars [6]. The variation of the period of the binary system, in agreement with 

Einstein'sformula, gives the first evidence that the system is losing energy by emis- 

sion of gravitational waves. Although this finding does not represent a direct meas- 

urement of the radiation it is of great relevance, both for general relativity and for 

astrophysics, and has been considered by some the most significant scientific contri- 

bution celebrating the 100th anniversary of the birth of Albert Einstein. This topic, 

presented in our school by Peter McCulloch, is the subject of the opening contribution 

of this volume. 

The turning point in relativistic astrophysics certainly occurred in 1967 with 

the discovery of pulsars within our own galaxy by Hewish and collaborators and by the 

discovery of a pulsar with a period of 33 milliseconds [7], within the remnant of the 

supernova explosion of 1054, extensively observed at that time by Chinese, Korean and 

Japanese astronomers ~]. Today, altogether 321 pulsars have been observed, and a 

very large number as well of supernovae remnants. Many of these observations have 

been carried out from Australian observatories. The next three contributions in this 

volume are concerned with these topics. 

J. L. Casweil has extensively reviewed our current knowledge of experimental 

data of supernovae remnants. His report focuses mainly on the topology of the super- 



novae remnants, on their surface brightness and their linear diameter as a function 

of time, as well as their distribution within the galaxy, their possible relation 

to interstellar matter and rate of formation. The subsequent article by R. N. 

Manchester gives a very extensive analysis of the characteristic features of the 

321 pulsars known. Starting from the analysis of pulse shapes and polarization, he 

moves from a study of pulsar periods, and of their variations with time, to an analy- 

sis of the pulsar distribution within our own galaxy and the birth rate compared and 

contrasted with supernovae observation. Finally L. Scarsi has presented the latest 

results from the European gamma-ray satellite COS B. The main new result deals with 

the y-ray structure observed both in the Crab and Vela pulsars, and in the enormous 

amount of energy carried away by gamma ray emission. It is by now clear that, at 

least in some pulsars, the majority of the rotational energy of the neutron star is 

carried away with very high efficiency by gamma ray emission, and this experimental 

result has to become of paramount importance in the modeling of the neutron star's 

~ission mechanism. 

The following five contributions are entirely dedicated to theoretical aspects 

of relativistic astrophysics. A. Cavaliere has analyzed the general theoretical frame- 

work of models of active galactic nuclei, quasars, lacertidi and seyfert galaxies. The 

emphasis in this work is directed to the conunon features belonging to the theoretical 

models of these sources which clearly pointto the rotational energy of a very mass- 

ive compact object as the source of their observed electromagnetic radiation: the 

special role of non-thermal emission processes are also discussed here. The follow- 

ing contribution of Ian Lerche is devoted to the theory of supernovae explosions. The 

implosion of massive stars is reviewed with special attention to the process which 

can lead to the emission of a supernovae shell (neutrino emission, blast waves, 

Rayleigh-Taylor instabilities) as well as ~hethermal instabilities and radiative 

cooling in the late stages of supernovae remnants, leading possibly to the explanation 

of the observed filamentary structure. 

Since the discovery of pulsars, much effort has been devoted to the structure 

of the magnetospheres of rotating neutron stars [9] . Leon Mestel has givena comp- 

lete review of recent advances in constructing a fully self-consistent model of these 

magnetospheres. Much of the recent work on this topic, carried out by Mestel and col- 

laborators, points to the special relevance of electrodynamical processes occurring 

at the light cylinder surfaces. 

Finally, R. F. Haynes and collaborators present an exhaustive theoretical inter- 

pretation of the available data on Circinus X-l, pointing to a binary system of large 

eccentricity composed of a massive star of approximately 20 solar masses, accreting 

into a compact companion star and emitting in this process X-rays as well as optical 



and radio signals. 

The next s:even contributions are totally dedicated to experiments on general 

relativity with a major emphasis on the development of gravitational wave detectors. 

E. Amaldi has reviewed the basic historical and theoretical works on gravitational 

radiation as well as the basic features of Weber bars. He has also reported the 

latest experimental results from the 24.4 kg and 390 kg gravitational wave antennae 

actually working at the University of Rome. The general problem of matching trans- 

ducer systems to antennae has been examined by D. Blair making use of Giffard's un- 

published work. In a second report, Blair comments on the design and performance of 

a parametric upconverter transducer. H. Hirakawa has reported on the low frequency 

search for gravitationa ! waves carried out by the Tokyo University group with square 

plates and disc-like antennae. Particularly significant here is the direct upper limit 

imposed on the gravitational wave emission from the Crab pulsar. 

Optimization of data analysis algorithms for antennae has been summarized by 

G. V. Pallottino with special attention to the extraction of an impulsive signal from 

the noise level of the electromechanical detection system. In his words, "It is clear 

that the effort expended in developing data analysis algorithms should be comparable 

with that in reducing the temperature of the bar or in increasing its mass." J.P. 

Richard has discussed the sensitivity of antennae instrumented with dual mode trans- 

ducers coupled to Superconducting Quantum Interference Devices. The projected noise 

temperatures of these systems are in a regime where the quantum nature of measurement 

must be recognised. A thorough investigation of the problem of quantum limitations 

imposed on gravitational wave antennae is the subject of an extensive review by W. 

Unruh. Other aspects of relativity experiments using low temperature techniques at 

Stanford University have been presented by John Lipa. He has given a progress report 

on the development of an experiment to test the equivalence principle by satellite, as 

well as an experiment to test general relativistic effects by gyroscopes orbiting the 

earth (the Standord Gyroscope Experiment). 

The final section contains five contributions on recent developments of the 

m~the~tical and theoretical work in general relativity and gives some very important 

results recently obtained in searches performed in Australia. It is well known that 

up to now, no exact solution of the Einstein field equation has been found describing 

the gravitational field of rotating objects. Clearly the astrophysical interest of 

finding such a solution is very large and some progress in this direction has been 

made by C. Cosgrove. It is presented in his article which describes a new technique 

for obtaining exact asymptotically flat solutions. 

The outstanding problem in the study of gravitationally collapsed objects has 



been to obtain master equations governing electromagnetic and gravitational perturb- 

ations of black holes. In this direction E. D. Fackerell has presented some import- 

ant recent progress using the Debever vectorial formalism. Again, this problem is at 

the very root of the theoretical work on black hole astrophysics. Still on black 

holes is the contribution of T. Damour, directed to establish their mechanical, elect- 

rodynamical and thermodynamical properties. 

C. Mclntosh has discussed some theorems imposed on the solutions of Einstein 

equations by special groups of symmetries and by the presence of Killing tensors, 

while P. Szekeres has developed some very original criteria for the observation in 

nature of naked singularities. 

It is clear from the variety and extent of the topics discussed in this 

meeting that gravitationally collapsed objects, and the phenomena associated with them, 

offer an extraordinary challenge to man's understanding. This challenge presents prob- 

lems of the most monumental and fundamental kind: universal in the most literal sense. 

Of such enlightenment that we now have, concerning the nature of this universe, we owe 

much to Albert Einstein, whose birth, one hundred years ago, we now honour with these 

proceedings. 

Chairman, 

M.J. Buckingham, 

Professor of Theoretical Physics, 

University of Western Australia. 

Chairman, 

R. Ruffini, 

Professor of Theoretical Physics, 

University of Rome. 
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GRAVITATIONAL RADIATION AND THE BINARY PULSAR 

P.M. McCulloch 

Physics, Department, University of Tasmania 
Hobart, Australia 

J.H. Taylor and L.A. Fowler 

Department of Physics and Astronomy 
University of Massachusetts, Amherst, U.S.A. 

About 320 pulsars have been discovered so far [1,2] but only one is known to be 

part of a binary system. This pulsar PSR 1913+16 was discovered in 1974 by Hulse and 

Taylor [3] during a high sensitivity pulsar search. The presence of an accurate clock 

associated with one massive body, the pulsar, in orbit about another massive body im- 

mediately attracted the attention of the astrophysical community. Many theoretical 

papers [4-6] were published showing how the mass of the pulsar could be measured and 

predicting many observable effects of special and general relativistic origin. One of 

the most exciting possibilities was to probe the general theory of relativity beyond 

its first post-Newtonian approximation by measuring the change in orbital period re- 

sulting from gravitational quadrupole radiations. For these measurements to be feasi- 

ble the pulsar period has to be very stable without any timing noise or glitches. 

Subsequent observations [7-9] have confirmed that the binary pulsar system is well 

behaved with no evidence of any timing noise. In fact it was shown to good accuracy 

that the pulsar acts like an accurate clock, moving in a Keplerian orbit with a con- 

stant rate of apsidal advance. The orbit of the pulsar was shown to involve large velo- 

cities (v/c = 10-3), a high eccentricity (e = 0.617), and relatively strong gravita- 

tional fields (GN/c2r = 10 -6) 

This paper summarizes the results of timing observations of PSR 1913+16, [9,10] 

made with the 305 m telescope at the Arecibo Observatory, at frequencies near 430 

and 1410 MHz. About i000 observations have been made spanning 4.1 years. Each obser- 

vation consisted of averaging together about 5000 pulses to provide a useful signal- 

to-noise ratio by making use of pre-computed ephemeris to define the expected pulsation 

period. The resulting profile was then fitted to a template, or "standard profile" by 

the method of least squares to determine a precise arrival time. Data on PSR 1913+16 

have been obtained using a number of different receivers, dispersion - removing systems, 

and recording methods which has resulted in a reduction of the random errors in the 

measured pulse arrival times from ~ 300~s in 1974 to ~ 50~s in 1978 [ll]. 



The timing data has been analysed following the formulation given by Epstein [12]. 

The current model describes the system with 13 parameters of physical interest, these 

are listed in Table i. 

TABLE 1 PARAMETERS DERIVED FROM TIMING DATA 

Right Ascension (1950.0) 

Declination (1950.0) 

Period 

Derivative of period 

Projected semimajor axis 

Orbital eccentricity 

Binary orbit period 

Longitude of periastron 

Time of periastron passage 

Rate of advance of periastron 

Transverse Doppler and 
gravitational redshift 

Sine of inclination angle 

Derivative of orbit period 

a I 

P 

sin i 

e 

Pb 

o 
T 
o 

7 

sin i 

~b 

= 19 h 13 m 12~474 ± 0~004 

= 16 ° 01' 08?02 ± 0?06 

= 0.059029995269 ± 2 s 

= (8.64 ± 0.02) x 10 -18 s s -I 

= 2.3424 ± 0.0007 light s 

= 0.617155 ± 0.000007 

= 27906.98172 ± 0.00005 s 

= 1787864 ± 0?002 

= ~ 2442321433206 ± o.oooool 
-i 

= 4.226 ± 0.002 deg yr 

= 0.0047 + 0.0007 s 

= 0.81 + 0.16 

= (-3.2 + 0.6) x 10 -12 
-i 

s s 

(Quoted uncertainties are twice the formal standard errors from the least-square 

fit). 

The observed times are first corrected from the location of the observatory to the solar 

system barycenter, which includes a relativistic correction to account for the annual 

changes in gravitational potential at the earth. A correction is then made for the 

dispersive delays imposed by the interstellar medium, using the frequency of observa- 

tion as Doppler shifted by the earth's motion. Finally the proper time T in the pul- 

sar's reference frame is obtained by correcting for the projection of the pulsar% orbi- 

tal position onto the line of sight, the combined effects of gravitational redshift 

and traverse Doppler shift, and the gravitational propagation delay. These three cor- 

rections have magnitudes dependent on the first, second and third power of v/c respec- 

tively. We make an initial guess of the values of the 13 parameter and hence compute 

T which is used to predict the pulsar phase at the time of observation from the equa- 

tion 

= ~0 + T/P - P T2/(2P 2) 

This phase should be close to an integer provided our initial guess is reasonable, the 



difference or phase residual is used in a least-squares solution for improved values 

of the parameters. The procedure is repeated using these improved parameters as a 

new initial guess until no further significant reduction in r.m.s, error is obtained. 

As indicated in Table i, the set of 13 parameters includes the celestial coordi- 

nates of the system, ~ and 8; the period and period derivative of the pulsar "clock", 

P and P; five "Keplerian" orbit parameters; and four parameters which measure effects 

of special and general relativistic origin. The first ten parameters are known to 

accuracies of many significant digits, while the last three have been determined to 

within approximately 20 percent. 

The weighted root mean square deviation of the 837 arrival-time measurements about 

the fitting function is 80 ~s. In an attempt to search for possible low-level sys- 

tematic departures of the data from the model, the residuals were averaged in 20 equally 

spaced segments of orbit phase. The resulting phase-averaged residuals are plotted 

in Figure i, with 430 MHz data and 1410 MHz data shown separately. The points appear 

to be scattered at random about the zero line, with no phase dependent errors exceed- 

ing ~ 20 ~s. We conclude that the timing model being used provides an exact fit to 

the data, within our measurement uncertainties, and therefore that no significant ef- 

fects have been omitted from the analysis. 
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Fig. i. Differences between observed and computed pulse arrival times for PSR 1913+16, 
after averaging the data into 20 equal intervals of orbit phase for each of 
two observing frequencies. Parameter values listed in Table 1 were assumed 
for the computations, together with a dispersion measure of 171.64 cm-3pc. 



The measured values of ~, y, sin i, and Pb' together with the well-determined 

Keplerian parameters, may be used to place constraints on the unknown masses of the 

pulsar and its companion (mp and m c, respectively). By inserting numerical values 

for the well-determined parameters, the relevant equations may be reduced to expres- 

sions involving only the four "relativistic" orbit parameters and the two unknown mas- 

ses: 

~GR = 2.11 [mp + mc)/M0] 2/3 deg yr -I 

= 0.002951 (mc/MQ)[(m p + 2mc)/M®][(m p + mc)/M®]-4/3 

sin i = 0.5083 (mc/M@) -I [(mp + mc)/M@] 2/3 

Pb = -1.70 x 10 -12 (mpmc/M®2)[m p + mc)/M@]-i/3 s s -I 

(i) 

s (2) 

(3) 

(4) 

These equations follow directly from relations glven in [7], and obviously contain more 

than enough information to determine the two masses. 

We can use this redundancy to check whether the measured rate of advance of peria- 

stron, ~, is due entirely to the general relativistic affect given by (i) and whether 

the observed value of Pb agrees with the calculated loss of orbital angular momentum 

by quadrupole gravitational radiation based on general relativity [6,13]. 

The constraints on the masses are illustrated in Figure 2 where we have plotted 

pulsar mass versus companion mass. The curves represent values plus and minus one 

standard deviation in each of the four parameters ~, y, sin i and Pb" (The uncertainty 

in ~ is so small that only a single line is drawn for this parameter). The data is 

consistent with the assumption that ~ = ~GR i.e. there are no non-relativistic contri- 

butions to ~. This then constrains the masses to lie on the sloping line in Figure 

2 so that mp + mc = 2.83 M®. 

The measured values of sin i and 7 restrict the possible combination of masses to 

= m = (1.4 ± 0.2) M 8. those points on the thickened portion of this line, glving mp c 

This value of pulsar mass would appear to be reasonable as theoretical investigations 

suggest that neutron stars are most likely to form with masses near the Chandresekhar 

limit. If the change in orbital period is due to quadrupole gravitational radiation 

= i0 -12 then equation (4) gives Pb (-2.404 ± 0.003) x which may be compared to the mea- 

= 10 -12" sured value, Pb (-3.2 ± 0.6) x We believe that these values are entirely con- 

sistent given the accuracy of the measurements and the concern [14,15] about the vali- 



dity of the quadrupole formula used to derive equation (4). 
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Fig. 2. Curves to delimit possible masses of the pulsar and its companion, based on 
the observed values of y, sin i, and Pb" On these criteria, the most pro- 
bable masses lie in the shaded region. The sloping straight line is the locus 
of all mass pa.irs for which the general relativistic contribution to ~ is the 
observed value, 4.226 deg yr -I. The emphasized portion of this line is con- 
sistent with the measured values of ~ and sin i and very close to the measured 
value of Pb; it probably represents the best available estimates of the masses. 

The measurement of Pb with the same sign and magnitude expected on the basis of 

gravitational radiation within general relativity is clearly a very important result 

which needs to be examined. The validity of the measurement is illustrated in Figure 

3, which shows the accumulating orbit phase error caused by assuming Pb fixed at its 

1974.9 value, i.e. Pb = 0. The measured points (which correspond to separate deter- 

minations of the time of periastron passage, To, for each of 7 major observing sessions) 
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are not well fit by a straight line. However, they fall very close to the plotted 

parabola, which represents the general relativistic prediction for mp = m c = 1.41 Me 

according to (4). The data thus provide a striking confirmation of a longstanding 

prediction of the general theory of relativity, and an indirect proof of the existence 

of gravitational waves carrying energy away from the orbiting system. 
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Fig. 3. The points represent measured orbital phase errors caused by assuming a fixed 
value of P . Uncertainties associated with each point are comparable to or 
smaller th~n the point itself. The plotted curve corresponds to the orbital 
period derivative predicted by general relativity if mp = m c = 1.41 M 8. 

What mechanisms other than gravitational radiation damping might be invoked to 

explain the observed change of orbital period? Several possibilities have been con- 

sidered and discussed in the literature, [5], but all of them now appear to be either 

implausible, G~ ~o, or of negligible magnitude. For example, differential galactic 

rotation and mass loss from the system contribute at most about one percent [5,16] of 

the observed value of Pb" Tidal interactions are utterly negligible if the compan- 

ion object is another neutron star or a black hole. Dynamic considerations cannot yet 

rule out a rapidly rotating white dwarf companion, [5],but all permissible white dwarfs 

have masses close to the Chandrasekhar limit, and hence radii R ~ 3000 km. Because 
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of the very strong dependence [5 ] (AP b- ~ R 9) of tidally induced period changes on com- 

panion radius, these white dwarfs also would have negligible influence on Pb" The 

presence of a massive third body causing an acceleration of the system cannot yet be 

ruled out with certainty, but seems most unlikely on evolutionary grounds. Within 

a few years the observational limit on the second derivative of the pulsar period, 

P, will provide a definitive test of this possibility. 

We conclude that the most straightforward interpretation of our measurement of 

Pb is that gravitational waves exist, and carry energy away from this orbiting system 

at a rate consistent with the predictions of general relativity. We are aware that 

some disagreement exists about whether the quadrupole formula used [13] to derive equa- 

tion (4) has neglected important higher-order terms. Obviously it is important for 

the theorists to reach an agreement on this point. At present, we can remark that the 

experimental evidence suggests that any inaccuracies in the calculations are not very 

large. 
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SUPERNOVAE - OBSERVATIONS AND CONVENTIONAL INTERPRETATIONS 

J.L. Caswell 

Division of Radiophysics, CSIRO, Sydney, Australia 

I INTRODUCTION 

Supernovae are recognizable by the enormous sudden increase in optical brightness 

of a star: within a few days the light from a single star becomes comparable to that 

from a wholegalaxy - and then decays again to insignificance over the following 

months. The observable features of supernovae arise from the outer layers of a star 

when they are ejected explosively. If we consider the amount of energy released and 

the short t~ne taken to release it, we find it just possible to account for it by 

nuclear fusion reactions provided that we have a suitable "explosive" mixture [i]. 

The explosion is usually regarded as a secondary effect triggered by the core's 

implosion and collapse to a very dense state of matter on a timescale of the order 

of milliseconds. Thus the formation of a supernova (and its stellar remnant or core) 

is generally reckoned to be one of the most promising class of events from which 

gravitational radiation might be expected (see Fig. 3 of Thorne [2] for a "half-educa- 

ted guess" as to the corresponding intensity of gravitational waves). 

In the context of this meeting the questions which are most important are : 

(i) What is the rate of occurrence of nearby supernovae (in particular, within 

our galaxy) ? 

(ii) How much energy is released? 

(iii) Which stars form supernovae? 

(iv) What is the galactic distribution of supernovae? 

(v) How can we recognize stellar remnants (cores) of old supernovae? 

II OPTICAL STUDIES OF SUPERNOVAE 

The rate of supernovae is not only important in itself, but it also largely 

controls the way in which we study supernovae. Given that the average rate is perhaps 

no more than one per century in Qur own galaxy, we simply cannot wait for the next one 

(in our galaxy) and study it in detail. Indeed, within our galaxy no supernovae 

have been recorded since AD 1604 - by Keple r. The actual recordings of supernovae 

(five in the last millennium) are an underestimate of the total, owing to heavy 

obscuration in some directions, and it can be argued that the rate in our galaxy may 

be as high as one per 30 years [3,4]. Certainly at least one supernova with no his- 

torical record must have occurred quite recently (near AD 1700) since it is now detec- 

table as the powerful radio source Cas A. 
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In any case, if we wish to study a reasonably large sample of supernovae, then 

we must monitor several hundred nearby galaxies so that several new supernovae per 

year are detectable. (Alternatively, if we restrict ourselves to our own galaxy we 

may study ren~nt8 of supernovae up to ages of many thousand years - as can readily 

be done at radio wavelengths - see Section III and reference [5]. 

Even from external galaxies at quite large distances, the initial optical flash 

is detectable and the spectra and light curves may be analysed. These analyses show 

differences among supernovae which have led to their division into two types - I and 

II - a division which I will ignore at present but return to in my next lecture [6]. 

In a few galaxies several supernovae have been recorded within a few decades. 

However, a statistically significant rate can only be derived by lumping together 

data from many galaxies. The rate is dependent on galaxy type and mass, and "correc- 

tions" are necessary to allow for obscuration and incompleteness in the monitoring 

prograrmae. The net result is that, in a galaxy resembling our own (asstuned to be 

Sbc) the mean interval between supernovae probably lies between 18 and 50 years [4]. 

The good "agreement" between Ta/r~aann's estimate based on external galaxies and Clark 

and Stephenson's [3] estimate based on historical records of our galaxy should not 

blind us to the fact that the uncertainties are large, and difficult to estimate 

realistically. 

In 

can cast 

(i) 

(ii) 

(iii) 

(iv) 

addition to yielding an estimate of the rate of supernovae, optical data 

some light on: 

the energy released - in particular the velocities of the ejecta PlUs a 

crude lower limit to the mass ejected; 

the chemical composition of the ejected envelope; 

the spatial distribution within galaxies - this is however severely modified 

by inclination effects (which include obscuration); 

the character of the progenitors - unfortunately so far there are no cases 

where a star has been studied prior to its eruption as a supernova. The 

spatial distributions of supernovae, both within galaxies and amongst galaxies 

of different type, have been used to argue that type II supernovae are mas- 

sive young stars while type I supernovae are less massive older stars, but 

the chain of argument is not wholly reliable, as will be mentioned later [6]. 

III SUPERNOVA REMNANTS - GENERAL 

Many millennia after the light flash has faded away, the site of a supernova is 

still recognizable by: 

(i) the ex~ndsd re;79~Gnt of the outer layers of the star which carries with it 

a large mass of interstellar material; 
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(ii) the collapsed core of the star, referred to as the 8telIGl ~ renTn~nt (see 

Section VI). 

Here I will chiefly be concerned with the extended remnant, which is an expan- 

ding shell that is steadily being decelerated as it sweeps up more of the interstellar 

medium. It turns out that the shell is a rich source of relativistic electrons and 

is permeated by an appreciable magnetic field. These give rise to synchrotron emission 

which is readily detectable at radio wavelengths. The relativistic particles and the 

field may originate either within the supernova itself or from its interaction with 

(compression of) the interstellar medium: the details are not wholly clear but for 

our present purposes it is sufficient to note that the extended radio remnants [7] 

provide a valuable means of pinpointing the sites of past supernovae and estimating 

their ages and energies. 

IV RADIO SUPERNOVA REMNANTS - BASIC ANALYSIS 

Currently more than i00 extended radio remnants are known in our galaxy [8]: 

another l0 or so have been recognized in our nearest extragalactic neighbours, the 

Magellanic Clouds [9]. I remarked earlier that optical and X-ray emission are less 

readily detectable. In fact, of the remnants in our galaxy, less than one-quarter have 

been detected as optical nebulae [i~] and still fewer have so far been detected as 

X-ray sources. 

Before proceeding with what we can learn from these radio remnants I Ought 

first to raise the question - ,,How do we recognize that a radio source is a supernova 

remnant?" 

Essentially we have to work backwards from the reliably identified historical 

ones - Kepler's supernova (AD 1604), Tycho's supernova (AD 1572) and the Crab nebula 

(AD 1054). All three are appreciably extended (several arc minutes) radio sources 

which radiate by the synchrotron process - a fact which is indicated by their non- 

thermal spectra, the presence of linear polarization at high frequencies, and the 

high brightness temperatures at low frequencies. 

In the case of AD 1572 and AD 1604 the emission is from an expanding shell, 

with a central minimum in intensity, whereas the Crab nebula has its peak intensity 

near the centre, decreasing steadily to the edges. 

Thus the characteristics necessary in order to classify a radio source as a 

probable galactic supernova remnant are: 

(i) non-thermal spectrum; 

(ii) situa£ion at low galactic latitude; 
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(iii) extension in two dimensions as opposed to the one-dimensional elongation or 

double source structures usually found in extragalactic radio sources). 

An up-to-date assessment shows that out of 120 supernova remnants, ~75 have a 

shell and ~i0 have no shell [ll]. In the remaining 35 cases, our instrumental reso- 

lution is adequate to confirm that a source is extended, but inadequate to distinguish 

between shell sources and centrally concentrated ("Crab-nebula-like") objects. However, 

we might reasonably expect improved measurements to reveal the majority to be shell- 

shaped with perhaps about five showing no shell. 

In the remainder of this discussion of supernova remnants, my remarks deal either 

specifically with shell remnants or else with the remnants as a whole - the statistics 

of which are dominated by shell remnants. (Later [6] I will return to a closer look 

at the centrally concentrated remnants). The existence of the shell is a manifestation 

of the interaction of the ejected debris with theinterstellar medium, since after the 

first few hundred years the mass swept up exceeds the mass ejected. 

The principal properties of supernova remnants which can be measured are: 

(a) the distance, most reliably determined from neutral hydrogen absorption 

measurements interpreted according to a galactic rotation model [12];' 

(b) the linear diameter, D (derived from angular size anddistance); 

(c) the radio surface brightness, Z (derived from the flux density and angular 

size). 

For remnants with measured distance (about one-quarter of those known in our 

galaxy and all those occurring in the Magellanic Clouds), the surface brightness and 

linear diameter appear to be related by 

~ D -3 (i) 

Thus the surface brightness steadily falls as the remnant expands and the diameter 

increases. 

The second relationship which seems to be followed is 

D ~ t 2/5. (2) 

In this case, the relation is inferred indirectly by considering cumulative number 

counts. The method is to use a sample of sources which is believed to be complete up 

to a limiting age (or equivalently above a limitingsurface brightness, or smaller 

than a limiting diameter); on a log-log scale, the slope of the cumulative number 
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count versus diameter then gives the exponent in equation (2) (see reference [8]). 

Since we know the ages of some individual supernova remnants, we can determine the 

constant in equation (2) on the assumption that all remnants are similar. Equation 

(2) turns out to be the expected (Sedov) relationship for the radius of a shock-front 

formed when an explosion occurs in a uniform medium under adiabatic conditions (negli- 

gible heat flow or radiative loss). This is strictly applicable only for an explosion 

instantaneously releasing energy but negligible mass and is therefore not appropriate 

until the mass of interstellar medium swept up considerably exceeds the mass ejected. 

In the Sedov equation, the constant of proportionality depends on (E/n) I/5 where 

E is the energy released and n is the ambient density: thus this ratio, or rather, 

its average value for all supernova remnants, can be estimated from these radio obser- 

vations. 

Combining equations (i) and (2) gives 

~ t -6/5 . (3) 

Completeness in our sample to a given brightness then yields the rate of occur- 

rence of supernovae, with the proviso of course that we are considering only those 

supernovae which give rise to shell remnants. 

So far my treatment has been an outline with the assumption of a uniform medium. 

I will now turn to the modifications necessary when one inspects the data more closely 

V RADIO SUPERNOVA REMNANTS - GRADIENTS AND THEIR IMPLICATIONS 

The fact that the shell of a supernova remnant is formed principally from the 

swept-up interstellar medium suggests that we should be wary of 8ystematio variations 
in the interstellar medium. Figure 1 corroborates this suspicion. 

We see that shells, or portions of shells, are typically fainter on the side 

further from the galactic plane; in other words, individual remnants show a gradient 

with decreasing brightness at large Izl. Hence we infer that if two remnants were 

of the same age, the one at larger Izl would, on the average, be fainter than the one 

at small Izl. 

A detailed quantitative investigation of this effect has now been made [14]. 

The result is that equation (3) becomes 

= 1.25 x 10 -15 t -6/5 exp(-Izl/ll0), (4) 
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with Z in units of W m-2Hz -1 sr -I, t in years and z in parsecs. I want to emphasize 

that this result comes directly from the radio measurements. A z dependence must 

also be present in (either or both of) equations (i) and (2). Consideration of meas~ 

rements on the density of the d~us~ interstellar medium (ignoring small-diameter 

clouds shows that we should expect 

D = 0.93 t 2/5 exp(Izl/900), (5) 

with D in parsecs. Since this would not wholly account for the z dependence in 

equation (4) we conclude that the Z-D relation also contains a z-dependent term as 

Z = 10 - l °  D - 3  e x p ( - I z l / 1 7 5 ) .  (6) 

G93.2+6.7 G55.7+3.4 G327.6+14.5 
G166 0+4 3 ~ ~ i--__ G296.5+I0.0 

r~" ~ / ~  ~ I ~  ~ ~ / ~  ~ ~G261"9+5"5 

, ~ | ~ ~'x'~._~G330.O+15.0 

G5 3-10 ' ~ " 

G 5 3 . ~ - 2 . 2 \ ~ 1 ~  ~ )  " " 315.4-2.3 c260.4-3.4 

Fig. i. Structure of 18 large-diameter SNRs showing their situation relative to the 
galactic plane. The hatched horizontal band represents the region within 
±120 pc of the galactic plane. SNRs in this region were excluded from the 
analysis. The galactic Centre is at the centre of the figure. Although the 
distribution in z is not a linear scale, the sources with large values of 
Izl are shown further from the plane than those with Izl only slightly 
greater than 120 pc. The SNRs themselves are all drawn to approximately the 
same linear scale. Contour levels have been selected to show outer boundary 
and the most prominent structure. This figure is taken from Caswell [13]. 

With the above constant, the appropriate value of Z is the measurement at 

408 MHz, but measurements at any other frequency ~ can readily be scaled to this 

frequency using the relations 
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Z(408)/Z(~)= S(408)/S(~) = [408/~] ~, 

where ~ is the spectral index and, for supernova remnants, a has a mean value of 

-0.45 and the distribution has a standard deviation of 0.15. 

The z-dependence of the Z-D relation (eqn. 6) becomes important for its appli- 

cation to individual high-z remnants if one wishes to use it to estimate diameters 

(and distances) from measured values of Z. Similarly the z-dependence of equation 

(5) is important when the age is to be estimated from the diameter. One of the 

radio remnants which occurs at a large z value (~600 pc) apparently corresponds to 

a supernova outburst which occurred in AD 1006 and provides an important test for 

our interpretation. The historical record of the optical sighting directly yields 

the age (~970 years) and allows one to independently estimate the distance (~1.3 kpc). 

If the radio measurements are interpreted with no allowance for the z-dependences of 

equations (5) and (6), then an age exceeding 7000 years and a distance of ~4 kpc are 

implied, with allowance for the z-dependences, we infer an age of ~600 years and a 

distance of ~2.2 kpc. These latter estimates are in much better agreement with the 

independent historical estimates and are a striking corroboration that a z-dependence 

is present in equations (5) and (6). 

Most of the observed supernova remnants occur at quite small z, and the z-dep- 

endences of equations (4), (5) and (6) do not greatly affect our estimates of their 

physical parameters. A much more drastic effect of these z-dependences is found when 

we consider the distribution of supernovae as a function of z and the rate of occur- 

rence of supernovae. I now show how the necessary revisions 'can be estimated (see 

ref. [14] for further details). 

THE SCALE-HEIGHT OF THE Z-DISTRIBUTION OF SUPERNOVAE 

Assume that the number of SNRs brighter than Z between I sI and I zI + I dsI is 

described by 

N(>Z, IzI)dz = N O ~ exp(-Izi/zDB)dZ. (7) 

The scale height of a sar~le complete to any limiting brightne88, E L, is thus ~B 

(the distribution scale height as measured by Clark and Caswell [8]. 

If we consider a sample complete to a limiting age, t L (the age of a source 

with brightness E L at z = 0), then at height z a source of age t L will have a bright- 

ness 
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Z = E L exp(-]zl/z Z) (8) 

(see eqn. 4, in which z~ = Ii0 pc). 

The distribution function complete to a limiting age is then obtained by subs- 

tituting equation (8) in equation (7) - i.e. 

N(<tL, Iz I) = N0Z ~ exP[-~Izl/zDA], (9) 

where ZDA , the scale height of this age-limited sample, is given by 

ZDA = Z~ZDB/(Zz+ ~ ZDB). (i0) 

(It can also be seen from eqns. (7) and (9) that the total number of SNRs obtained 

by integrating the distribution function over all z is larger by a factor ZDA/ZDB 

for the sample complete to t L than for that complete to E L. In addition, with the 

assumed exponential dependences, the power ~ is of course the same for both the 

observed sample with limiting brightness and for a sample complete to a limiting 

age.) Observationally, the scale height ZDB is found to be 80 pc over the well- 

observed half of the Galaxy, zz = ii0 pc as noted in equation (4), and ~ = -5/6. Thus 

ZDA = 203 pc. 

This therefore is the distribution scale height of an SNR sample complete to a limiting 

age and therefore it is the scale height of the progenitors. 

THE RATE OF SUPERNOVAE 

The mean interval between supernovae (of the type leaving radio remnants) was 

found by Clark and Caswell [8] to be ~150 years. But this was derived from the total 

SNRs in a sample complete to a limiting brightness (and thus refers only to supernovae 

leaving "long-lived" shell remnants - as do all previous estimates made in this way). 

If we define a sample complete to a limiting age (which will then include those super- 

novae which decay fast on account of their large Izl values) the rate will clearly be 

higher by a factor ZDA/ZDB. With other minor revisions to the Clark and Caswell data 

the interval then becomes 80 years. It is the mean rate of supernovae which form 

shell remnants. 

VI SUPERNOVA REMNANTS AND PULSARS - A COMPARISON OF THEIR RATES OF FORMATION 

The supernova rate as derived in Section V has often been compared with the 

rate of formation of pulsars, to test the contw~n belief that pulsars are the stellar 
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remnants of supernovae and show a one-to-one correspondence with supernovae. In 

several instances [15,16] a high pulsar formation rate has been estimated, leading 

to the startling claim that pulsars are formed more frequently than supernovae and 

thus in many cases must have a less violent origin than a supernova explosion. Such 

a high rate of pulsar formation would be encouraging for gravity wave searches but 

may be unduly "optimistic". It is appropriate here to compare closely the methods 

by which the supernova rate for shell radio remnants and the pulsar birthrate are 

estimated. I have made this comparison in the Appendix. This highlights a major 

difference in the assumptions made for supernova remnants and pulsars: pulsars are 

assumed to have a well-defined switch-off age, and if this is not valid, then the 

formation rate may have been severely overestimated. It will be important to resolve 

this issue before drawing further conclusions concerning the pulsar birthrate. 

VII CONCLUSIONS 

The supernova parameters which we derive in Section V from the most recent 

study of the shell remnants (for details see [14]) are: 

1051 (i) E/n in the galactic plane is typically ~5 x erg cm 3. If the value of 
3 

n for the diffuse medium at z = 0 lies between 0.i and 1 atom per cm , then 

1050 1051 E lies between 5 x and 5 x ergs. Note that 1 M 8 ejected at 104 

km s -I corresponds to a kinetic energy of 1051 ergs. 

(ii) The scale height of the progenitors of supernovae (of the type which produce 

shell radio remnants) is ~200 pc. 

(iii) The rate of occurrence of supernovae (again, with the very important proviso 

that we are considering only th6se supernovae which produce shell radio 

remnants) is ~i per 80 years. The total rate must be higher than this since 

some supernovae leave remnants resembling the Crab nebula, and it is concei- 

vable that some leave no detectable radio remnants. I will return to this 

problem in my next talk [6]. 

At the beglnning of this lecture, I emphasized aspects especially relevant to 

this meeting. Before closing I would like to return to an overall perspective and 

summarize a wide range of exciting reasons which motivate people to study supernovae 

(in addition to their potential for being the most likely detectable source of gravi- 

tational waves) . 

(a) A supernova is one of the most spectacularly energetic phenomena in nature. 

(b) The synthesis of heavy elements and their subsequent distribution through- 

out the interstellar medium is accounted for by supernovae. 

(c) Supernovae probably offer a solution to the puzzle of the origin of cosmic 

rays 

(d) Supernovae may be the dominant regulators of the structure of the inter- 

stellar medium [17]. 
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(e) Supernova remnants may provide a measure of the scale height of the galactic 

magnetic field [14]. 

(f) Supernovae can potentially be valuable distance indicators over very large 

distances, perhaps corroborating the cosmological distance scale [18]. 

(g) The remnants of supernovae occurring close to planetary systems such as our 

own can be the cause of striking climatic changes and may even have signifi- 

cantly affected the development of life itself. 

APPENDIX - RATES OF FORMATION OF PULSARS AND SUPERNOVAE - BASIC DIFFERENCES 

IN THE METHODS OF DATA INTERPRETATION 

In the case of radio supernova remnants and in the case of pulsars we simply 

estimate the total numbers present in our galaxy up to a limiting age and divide by 

this limiting age. Although the analyses are superficially similar, there are major 

differences. 

The supernova r~mnant m~thod (as applied by Clark and Caswell [8]; see also 

[14] for refinements) uses, in essence, a sample of supernova remnants complete over 

the whole Galaxy to a given radio brightness. Then assuming a tight (inverse) cor- 

relation between age and brightness, those supernova remnants of known age and bright- 

ness may be used to estimate the limiting age of the sample, and the frequency of 

occurrence is readily calculated. 
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Figure 2 sketches the observational results. Because of the tight correlation 

of age and brightness, the slope of the distribution is dominated by the fact that 

as we go to lower Z, we are looking at older sources and therefore the total number 

of sources increases. 

In the case of pulsG28, searches can be made complete to a given received flux 

density and the luminosity function can only be constructed for the local region 

rather than for the Galaxy as a whole. This makes the extrapolation to the edge of 

the Galaxy strongly dependent on the distance scale. Even assuming this problem to 

be satisfactorily overcome, there remains a fundamental difference of interpretation 

compared with the supernova case. Figure 3 sketches the inferred pulsar luminosity 

function - the cumulative [19] number counts as a function of luminosity. All recent 

analyses [15,16,20-22] show essentially similar results with a slope of approximately 

-i. However, improved experimental data have revised the details and the lower limit 

of luminosity has shifted steadily to smaller values. 
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If we were to assume the pulsar luminosity to be a smooth function of age, then 

we could proceed as for supernova remnants - but this ~8 not been the accepted 

procedure. Instead, it has been argued that the luminosity is essentially indepen- 

dent of the age, up to a "switch-off" age where the pulsar effectively stops radia- 

ting. In the analysis of Taylor and Manchester [ t6], which is typical of those 

made to date, the maximum age is taken to be twice the average age. But it must 

then be remembered that Figure 3 is not the observed distribution but a "corrected" 
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distribution: in the observed distribution most of the pulsars occur near L408 = 

100 mJy kpc 2. It is thus assumed that the average age of pulsars with luminosity 
2 

~i00 mJy kpc is an equally appropriate estimate of the age even for the (very few) 

pulsars several orders of magnitude fainter. 

Suppose that the luminosity steadily falls with increasing age (in addition to 

there being a wide dispersion of luminosity at a given age): then to derive the 

rate of formation, the total number of pulsars should be divided by the typical age 

of a pulsar at the lowest observed luminosity and this could lead to a rate consider- 

ably lower than current estimates. Lyne et al. [23] present evidence that L408 does 

vary inversely as the characteristic age. Furthernore, recent work [24] suggests 

that the characteristic age may generally be a quite good estimate of the true age 

(dispelling some earlier doubts). Furthermeasurements are now needed to assess 

more reliably the relation between luminosity and age - a problem which can be summed 

up as: "old supernova remnants never die, they only fade away (slowly). Is this 

equally true for pulsars?" 
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SUPERNOVAE - CURRENT AREAS OF RESEARCH 

J.L.Caswell 

Division of Radiophys~cs, CSIRO, Sydney, Australia 

I DO SUPERNOVAE ORIGINATE IN BINARY SYSTEMS? 

It is generally accepted, on observational grounds, that at least half the stars 

in our galaxy are in binary systems: on theoretical grounds it has been argued [i] 

that a binary origin for most Stars seems necessary to solve the angular momentum 

problem. It therefore seems very likely that the majority of supernova progenitors 

are in binary systems. Indeed, people working in the field of binary stars routinely 

include supernova explosions in their scenarios describing the evolution of binary 

systems [2]. On the other hand, researchers active in the field of supernovae have, 

with a few exceptions, tended to ignore the consequences of a possible binary environ- 

ment, on the principle that it would be wise to fully understand the likely evolution 

of a single star before introducing the additional complexities of binary systems; they 

thereby avoid the temptation to use the binary environment as a "deus ex machina" - or 

a hand-waving explanation of the difficult-to-explain properties. However, an explan- 

ation invoking binary systems seems especially necessary to account for the type I 

supernovae if they are of low mass [3,4]: at the other extreme, the more massive stars 

believed to form type II supernovae also seem likely to originate in binaries, since 

observationally the tendency for stars to occur in binaries is greater for more massive 

stars. 

As I mentioned previously [5], we are unfortunate in lacking detailed studies of 

any stars prior to their eruption as supernovae - this direct information on whether 

they are binaries would be invaluable. We may as an alternative look closely at the 

stellar remnants - which I will do in a later section. 

II WHAT ARE THE SIGNIFICANT DIFFERENCES BETWEEN TYPE I AND TYPE II SUPERNOVAE? 

According to the conventional wisdom, type II supernovae are very energetic and 

result from the explosion of massive young stars of population I situated in the spiral 

arms of galaxies: type I supernovae occur in older population II stars of much lower 

mass and are much less energetic. 

I will first summarize the facts behind this picture and then sow some seeds of 

doubt as to whether it is very satisfactory. 

The observed differences between type I and type II supernovae which are used to 

classify supernovae are the appearance of the light curves, the higher optical luminosity 
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of type I at maximum brightness, and differences in the spectra. The differences in 

their spectra are perhaps most significant, since it is clear that type I are relativ- 

ely hydrogen-deficient. The operating definition of a supernova is based on the 

maximum brightness, and Tammann [6] suggests that a peak brightness of <-15 m is a 

satisfactory criterion. The peak magnitudes for type I and type II are -19.1 and 

-17.2 respectively; these are mean values and the distributions overlap. The maximum 

of a type I supernova seems to depend systematically on the galaxy type in which it 

occurs. As Tammann remarks, it makes one doubt the oft-quoted conclusion that type I 

supernovae are a more homogeneous class than type II (a conclusion based on the light 

curve 8~e8). The mean light curves for type I and type II supernovae differ some- 

what in shape, but this is at least partly due to differences in the spectrum and 

should perhaps be considered in conjunction with spectral differences [7]. 

The properties mentioned so far allow one to classify a supernova but are not 

indicative of gross physical differences between the types. The one characteristic 

which has led people to believe that the types are grossly different is an indirect 

one concerned with their distribution with respect to galaxy type. Type II super- 

novae have not been observed in elliptical galaxies whereas type I supernovae have: 

it is therefore argued that since the current stellar population of ellipticals is 

believed to be old and of low mass, type I supernovae must have low-mass progenitors. 

Furthermore, the absence of type II supernovae would be explained if they occur only 

amongst young, high-mass, stars, and this seems to be corroborated by their presence 

only in spiral galaxies and more specifically in the spiral arms of these galaxies. 

The possible occurrence of small regions of active star formation in ellipticals 

might invalidate this line of reasoning. Tammann [8], after pointing out the similar 

physical parameters of the two types of supernovae, questioned whether they might 

arise from the 8Gme kind of dying (massive) stars. However, he subsequently [6] 

rejected this possibility as untenable. Nevertheless cracks are beginning to show 

in the edifice constructed to account for type I and type II differences. Tinsley 

[9] points out that irregular galaxies with a high star-formation rate (which one 

would expect to produce type II supernovae) appear to produce only type I supernovae - 

at a quite high rate. At the very least we should accept that the range of masses of 

type I supernovae may overlap those of type II supernovae and their typical energies 

may differ by less than an order of magnitude. 

Uncertainty also surrounds the interpretation of the radio remnants:in an Appen- 

dix I have indicated the more dramatic changes of interpretation to date. It provides 

a useful background to the following section. 

III WHY ARE THERE TWO KINDS OF EXTENDED RADIO REMNANTS OF SUPERNOVAE? 

For many years it has been customary to adopt a peculiarly ambivalent attitude 
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to the Crab nebula. On the one hand, as a well-studied remnant, with a reliably 

identified neutron star core, it is used as a test-bed for supernova theories. On 

the other hand, it is the most atypical of remnants and thus to argue any general 

conclusion concerning supernovae from its properties is a very hazardous exercise 

of doubtful utility. 

However, it now appears that in addition to the Crab nebula itself, at least 

eight other radio supernova remnants are of similar type [i0], and the implications 

for these supernovae can no longer be ignored. 

When I describe remnants as "resembling the Crab nebula!', I mean principally 

that they are c~ntrally concentrated and have their maximum emission at the centre 

with the intensity falling off at the edges: this is in striking contrast to the 

shells of emission seen in most supernova remnants. A second characteristic is that 

their radio spectra are, on ~he average, flatter than those of shell remnants: the 

distribution of spectral indices for the centrally concentrated remnants has a mean 

of -0.28 with standard deviation 0.17 whereas that of shell remnants is -0.45±0.15. 

It appears [i0] that the formation of shell remnants and centrally concentrated rem- 

nants are mutually exclusive developments. However, in one remarkable case (G326.3-1.8), 

which I shall return to later, we seem to have a centrally concentrated remnant with a 

prominent shell surrounding it. 

Radio, optical, and X-ray emission from the Crab nebula itself is maintained by 

the continued activity of the central pulsar end it is plausible that all remnants 

resembling the Crab nebula have a similar energy source. In contrast, radiation from 

shell remnants is dependent on the energy already deposited in the expanding shell. 

(Radio emission is generated by interaction of the shell with the swept-up interstellar 

medium, or possibly through conversion of kinetic energy of bulk motion into relativi- 

stic particles and magnetic field [ii], in the early stages.) 

In general, the centrally concentrated remnants are fainter at a given diameter 

than the shell remnants and also show a larger scatter about the average evolutionary 

track. The lack of a detectable outer shell suggests that at the time of the supernova 

explosion itself, less mass was ejected than in the case of shell remnants. 

I now turn to a r~markable general property of the centrally concentrated rem- 

nants as a group. The observed appearance of centrally concentrated remnants is approx- 

imately elliptical and, as shown in Figure 1 (from [i0]), the major axe8 of all the 

remnants are aligned with the galactic plane. It is not clear whether we are observing 

prolate spheroids with major axes aligned or oblate spheroids with minor axes perpen- 

dicular to the plane. As with any effect of this type, there is a possibility that 
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the alignment is due to chance, but assuming this not to be the case two possible 

causes are - 

(i) the magnetic field of the Galaxy, whose principal component is in the plane of 

the Galaxy, controls the expansion of the remnant by restricting movement perpen- 

dicular to the field lines while permitting it along the field lines. The result 

would be aligned prolate spheroids. 

(ii) the material is ejected from the supernova in an asymmetric fashion, perhaps 

preferentially in the equatorial plane of a spinning star: the angular momentum 

of the spinning star would need to be aligned with that of the general galactic 

rotation in this explanation. 
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Fig. i. Nine SNRs resembling the Crab nebula , showing the orientation of their 
isophotes relative to the galactic plane (the horizontal line). Taken 
from reference ~0 ] 

As discussed in detail elsewhere [i0], both of these simple explanations face 

severe problems. Perhaps the situation is appropriately surmmed up in the words of 

Professor Norman Feather (in another context): "Because these two suggestions appear 

to exhaust the logical possibilities of explanation, it is tempting to admit that one 

of them must be basically correct, but whoever would make this admission must be 

fortified by credulity of a high order." 

However, the main point to emphasize is that here we have an observational fact 

which, although not wholly understood, must surely provide us with a valuable clue to 

the developmentof centrally concentrated supernova remnants. 

Let us summarize some differences between centrally concentrated remnants and 

shell remnants. The centrally concentrated ones probably contain pulsars and they may 

total as many as one-half of all supernovae (2/5 of those observed in our galaxy in 

the last millennium). Shell remnants either have much less energetic pulsars (or 
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none) or else conditions within the cavity of the shell may be unfavourable to the 

formation of any "Crab-like" remnant additional to the shell. 

IV STELLAR REMNANTS OF SUPERNOVAE - PULSARS OR X-RAY BINARY SYSTEMS? 

We have one certain pulsar associated with a supernova remnant - the case of 

the Crab nebula. This one example suggests that in the centrally concentrated remnants 

at least, the stellar remnant is a neutron star normally detectable as a pulsar. 

Furthermore, the Crab pulsar is apparently not (now) in a binary system. 

Are there pulsars in all (or any) of the shell radio remnants? The Vela super- 

nova remnant/pulsar association suggests that at least one shell remnant does contain 

a pulsar, although the morphology of the Vela supernova remnant is unusual: the 

pulsar position is off-centre from the shell and located in a region of enhanced 

emission. However, it may be that there is no active radio pulsar within most Shells 

(and, as already noted, the presence of an active neutron star is not essential to the 

maintenance of radiation from the shell). Indeed, for several shell remnants,' the 

suggestion has been made that the corresponding stellar remnant may be an object of 

the X-ray binary type. The most striking cases suggested to date are G321.9-0.3 (with 

Cir X-l), G39.7-2.0 with A1909+04, the Cygnus Loop with CL4, and G127.1+0.5 with a 

point source at its centre [12]. In all of these cases a radio source which is weak 

and non-pulsing (but slowly varying on a time-scale of days or weeks) may be associated 

with the extended radio shell remnant. 

It thus seems appropriate to consider the possibility that all centrally concen- 

trated supernova remnants (like the Crab nebula) contain a single pulsar whereas shell 

remnants generally contain a binary system of which one component is a neutron star 

that is not detectable as a radio pulsar. Neutron stars in binary systems with 

"normal" stars are sometimes found to be X-ray pulsars [13] but none of the known 

examples is a radio pulsar. Of the 300 known radio pulsars only one is in a binary 

system, and in this one case the companion is probably another neutron star. It thus 

appears that when a neutron star is ih a binary system with a normal star companion, 

the presence of the companion star inhibits activity characteristic of radio pulsars: 

the rare occurrence of two neutron stars in a binary system suggests that the explosion 

forming the second neutron star commonlY disrupts the system. The appreciable eccen- 

tricity of the orbit of the known binary pulsar tends to confirm this hypothesis. 

To investigate further the validity of this picture it is of interest to compare 

the rate of formation and the spatial distribution of four classes of objects: 

(i) radio pulsars; 

(ii) centrally concentrated supernova remnants (resembling the Crab nebula); 

(iii) shell supernova remnants; 

(iv) binary X-ray/radio sources - containing one collapsed (neutron) star. 
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It has been shown [14] that shell supernova remnants have a galactic z-distri- 

bution similar to that of young pulsars. The rate of formation of pulsars seemed 

from earlier estimates to be somewhat higher than that of shell supernova remnants 

but the most recent pulsar analyses suggest that they may be similar [15-17]. Data 

on the frequency of occurrence and galactic distribution of centrally concentrated 

remnants are sparse, but the best current estimate appears to be that both parameters 

are similar to those of shell supernova remnants [i0]. The distribution and frequency 

of the X-ray binaries are very poorly determined as yet and indeed they may comprise 

more than one class of object% Thus we conclude that all four classes of objects 

rr~y have similar galactic distributions and rates of formation. 

I would like to return briefly to the rate of formation of the radio pulsars. 

It is usual to allow for the fact that only perhaps one-fifth of pulsars will be 

visible to any one observer owing to beaming effects. The rarity of radio pulsars 

with an interpulse has been used as an argument suggesting that emission is confined 

to a cone of small solid angle. But a contrary argument is suggested by the newest 

data on y-ray emission from radio pulsars [18,19]. The objects so far detected (four 

published and additional unpublished examples) all have double peaks in y-rays, although 

only one (the Crab pulsar) has a double peak in the radio. The y-ray pulses may 

yield a better indication of the geometry than the radio pulses, suggesting that 

orientation effects may not be as great as has been inferred from the radio emission. 

The beaming factor, even for the radio emission, might therefore be near to unity, 

which would considerably lower the estimate of the pulsar birthrate. 

V A SCHEME TO ACCOUNT FOR MOST OF THE AVAILABLE DATA - BASED ON KHNDT'S SCENARIO 

In outline, Kundt [20] has proposed that type II and type I supernovae are the 

first and second explosions respectively in a massive binary system. The radio remnants 

are of shell and centrally concentrated types respectively and their stellar cores 

form neutron stars which do not become visible as radio pulsars until after the second 

explosion (which is assumed to usually disrupt the binary system). Thus within this 

picture the details are essentially in agreement with the earlier individual sugges- 

tions which I have summarized so far. The new dimension is the incorporation of all 

aspects in a single model, with the supernova types being uniquely associated with 

different types of remnant and different types of pulsar (type II supernovae, the 

first of the binary system, are assumed to yield long-period pulsars, but they are 

assumed to be not detectable until after the second explosion). Over a long period, 

the numbers of type II and type I supernovae in a galaxy would be equal. However, 

the interval between the type II and type I explosions permits the binary system to 

move from its birthsite within a spiral arm, so that type I supernovae do not occur 

in spiral arms. Furthermore, type I supernovae can still be occurring in elliptic 

galaxies long after star formation may have ceased. 
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Fortunately for the advancement of astronomy, there is no fear that we shall be 

lulled into a belief that all is now explained~ As usual, theoretical, speculative 

and observational aspects are not "in phase"2 Thus Kundt's suggestion that type II 

supernovae produce shell remnants with a small scale height in z fitted the observations 

of several years ago: but it now appears that shell remnants have a galactic distribu- 

tion with scale height ~200 pc. Furthermore, if Tycho's and Kepler's supernovae are 

typical of the shell remnants, we should bear in mind that they are commonly inter- 

preted as type I supernovae (based on the historical light curves) - see Appendix. 

The Vela supernova shell with its pulsar is a problem with Kundt's interpretation: 

perhaps it represents the situation where we are observing the effects of the first 
explosion under the rare circumstance that the binary is disrupted in this first 

explosion. G326.3-1.8 may be another such example, the extended remnant could then 

display properties similar to both shells and centrally concentrated remnants simul- 

taneously. 

Kundt suggests that the second (type I) explosion initially forms a centrally 

concentrated remnant but eventually, after this fades away (quite rapidly), a shell 

may form. However, the statistics of the shell remnants and centrally concentrated 

remnants makes this rather doubtful, and I think it more likely that once the centrally 

concentrated remnant has faded, the remnant remains undetectable. 

I suggested earlier that in the case of centrally concentrated remnants, the 

absence of any observable shell might simply be a result of less mass ejected. If 

however these supernovae are the second ones in binary systems, it is possible that 

the modifications to the surrounding interstellar medium caused by the first supernova 

(the sweeping-up and heating of the medium) persist even up to the epoch of the second 

explosion. Since the shell appearance is intimately related to the interaction of the 

ejecta with the surrounding medium [14] this is a quite attractive possibility provided 

that the interval between the two explosions is not so long as to allow the interstellar 

medium to relax to its "initial undisturbed" state. V. Radhakrishnan (private con~uni- 

cation) has suggested that the interstellar environment is what distinguishes the 

appearance of shell and centrally concentrated remnants and this would be a development 

of his suggestion. 

Despite some problems in Kundt's scenario, it provides a useful framework for 

further investigation, and if broadly correct has some important implications. And at 

the very least it should prompt careful reconsideration of whether a binary system is 

a vital ingredient in the recipe for creating supernovae with properties as observed. 
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APPENDIX 

It is illuminating (and perhaps a salutary warning) to see how considerable are 

the changes in the interpretation of the radio data which have occurred even in the 

past decade. 

shklovsky [21] suggested that most shell remnants (Cas A and the Cygnus Loop 

being examples at opposite extremes in age and brightness) are the result of the release 

of ~i051 ergs of kinetic energy (the ejection of 11 M® at velocity -5000+104 km s -1) 

and correspond to type II optical supernovae. In contrast, he inferred that only about 

1048 ergs were released in the formation of the Crab nebula (e.g. 0.i M® with velocity 

103 km s-l): the Crab nebula he regarded as a type I supernova with above average 

energy release. Tycho's supernova (AD 1572) and Kepler's supernova (AD 1604) were 

also regarded as probably of type I (based on historical light curves) despite the 

resemblance of their radio emission to Cas A and other shell remnants. However, the 

energy release from the supernovae of AD 1572 and AD 1604 was in fact assumed by 

Shklovsky to be even les8 than from the Crab nebula. 

By 1974 a considerable change of interpretation was proposed. Shklovsky [22] 

still regarded Cas A as releasing 1+2 x 1051 ergs, and an example of type II supernova, 

but most of the other shell remnants (including the Cygnus Loop) now joined AD 1572 

and AD 1604 as type I supernovae. However, the typical energy of these type I super- 

novae was now reckoned to be ~1050 ergs. The energy released in the Crab nebula was 

revised to ~i049 ergs (somewhat higher than before) but it was now regarded as one of 

the Z4ast energetic of the type I objects. In the work of other authors, similar 

gross changes of interpretation have occurred. 

In summary then, we see that at one time the kinetic energy associated with 

shell remnants appeared to span three orders of magnitude. More recently this has 

been narrowed to a single order of magnitude, with some doubt now as to whether they 

constitute type II, type I or a mixture of types. The Crab nebula is generally 

agreed to have a kinetic energy an order of magnitude smaller than the shell remnants, 

although a minority opinion [23] suggests that we are seeing only the central portion 

of the remnant and its total kinetic energy may be as large as a typical shell remnant.' 
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PULSARS 

R.N. Manchester 

Division of Radiophysic8 
GSIRO, Sydney, Australia 

I CHARACTERISTICS OF THE PULSED EMISSION 

The discovery of pulsars in 1967 by the group in Cambridge [i] has proved to be 

an event of major importance to astrophysics and indeed to physics in general. Pul- 

sars provided the first observational evidence for the existence of neutron stars, a 

form of collapsed star first discussed by Baade and Zwicky in 1934. Evidence suggests 

that pulsars contain extremely strong magnetic fields, among the strongest anywhere in 

the ~niverse, so they provide a unique opportunity for the study of complex electro- 

dynamic processes. As the end-point of stellar evolution for at least certain massive 

stars, their observation places significant constraints on theories of this evolution. 

The pulsed and highly polarized character of the observed pulsar emission makes them 

extremely useful probes of the interstellar medium. Finally, and most significantly 

for present purposes, they have provided the first observational evidence for the exis- 

tence of gravitational radiation and a significant test of gravitational theories. 

At the time of writing the number of known pulsars is 321. As will be described 

in more detail below, all of these pulsars are believed to be within the Galaxy. They 

constitute a very small fraction of the total number of pulsars in the Galaxy, but their 

intrinsic properties are probably reasonably representative of the total galactic pop- 

ulation. In this section we describe the observed properties of the pulsed emission 

and some of the implications of these observations for models of the radiation mecha- 

nism. In Section II the techniques used to measure accurate pulsar periods are des- 

cribed. The observed variations in periods, including the secular increase, discon- 

tinuous changes and those due to binary motion, are described and their implications 

discussed. Finally, in Section III, the galactic distribution and evolution of pul- 

sars is considered. 

The observed distribution of pulsar periods is shown in Figure i. Since pulsar 

searches have not discriminated strongly against any periods within the range plotted, 

this distribution is likely to be an accurate representation of the true distribution 

of pulsar periods. The pulsar with the shortest known period (33 ms) is that associated 

with the Crab nebula, that with the second-shortest period (59 ms) is a member of a 

binary system which has an orbital period of 7h45 m, and that with the third-shortest 

period (89 ms) is associated with the Vela supernova remnant. The longest known period 

in 4.3 s. 
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Following the dis- 

covery of pulsars, pro- 

posed mechanisms for the 

periodic modulation of 

the observed signals in- 

cluded radial vibration, 

orbital motion and rota- 

tion. The subsequent 

detection of the short- 

period Crab and Vela pul- 

sars and observation that 

the periods of these pul- 

sars were slowly but stea- 

dily increasing ruled out 

vibrational and orbital 

models. Furthermore, it 

restricted rotational 

models, as the neutron 

star was the only known class of star which could rotate at a rate as high as 30 times 

a second without disruption. Therefore the rotating neutron star model, first proposed 

by Gold [2], was adopted. Subsequent observations have not conflicted with this iden- 

tification. 

As will be described in more detail in Section II, the observed rates of period 

increase imply that pulsars contain extremely strong magnetic fields. If these fields 

are assumed to be basically dipolar in form, computed field strengths at the surface 

of the neutron star are of the order of 1012 G. 

Figure 2 shows mean or integrated pulse profiles for a selection of pulsars. This 

figure shows that the pulsed energy is generally restricted to a rather small part of 

the period. The mean equivalent width (i.e. pulse area/maximum amplitude)for all 

known pulsars is about 13 degrees of longitude (where 360 ° is by definition the pul- 

sar period). It also shows that integrated profiles often have several components 

and, especially for pulsars of longer period, that two-component or "double"-pulse 

profiles are common. In some pulsars with more than two components (e.g. PSR 1237+ 

25 and PSR 2045-16) the profile is still basically do~ble in form,. Despite their often 

rather complex shape, these profiles are extemely stable - except for the binary pul- 

sar [3], observations over intervals of several years have produced no evidence for 

any secular variation in profile shape. Since pulsars are identified with rotating 

neutron stars, the integrated pulse profile represents the shape of a beam which is 

fixed with respect to the neutron star. The observed symmetry of the double-pulse 
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Fig. 2. Integrated pulse profiles for 45 pulsars, all plotted on the same longitude 
scale. A bar indicating 90 ° (quarter of a period) is at the bottom of the 
figure. The pulsars are arranged in order of increasing period with shortest 
at top left and longest at bottom right [4] 
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profiles suggests that, at least in these cases, the beam is in the form of a 

hollow cone. 

Despite the observed stability in mean pulse profiles,the shape of individual 

pulses typically varies greatly from pulse to pulse,Figure 3. Individual pulses gen- 

erally consist of one or more subpulses, that is, bursts of emission whose width is 

a few degrees of longitude. In many pulsars the subpulse modulation appears random 

but in others systematic effects are seen. For example, in PSR 1237+25 Figure 3, there 

is a quasi-periodic modulation of the leading and trailing components with a strong 

subpulse approximately every third period. Similar quasi-periodic modulations are 

seen in other pulsars. In some cases these are related to the phenomenon of "drift- 

in subpulses", where the central longitude of subpulses drifts systematically across 

the integrated profile in successive pulses. Figure 4 gives three examples of pul- 

sars showing this behaviour. These data show that the rate at which subpulses drift 

across the profile is often variable. Despite this, the intrapulse spacing of the 

drift bands (often called the secondary period, P2 ) is approximately constant in a 

given pulsar. 
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of dots represents one pulse and the size of the dots represents 
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Fig. 4. Longitude-time diagrams for three pulsars which have strong drifting 
subpulses [4]. Since successive pulses are plotted upwards, the sub- 
pulses in these pulsars drift from the trailing edge of the integrated 
profile toward the leading edge. In some pulsars the drift is in the 
opposite direction and in others both directions of drift are seen. 
In these cases however the drifting effect is generally hot as obvious 

Observations with higher time resolution show that, in some pulsars at least, 

subpulses consist of a series of micropulses which typically have timescales of i0-i00 

~s. In most cases the micropulse amplitude fluctuations are random in character, but 

occasionally, such as the example shown in Figure 5, this modulation also is quasi- 

periodic. The available evidence suggests that, whereas the integrated profile and 

subpulse modulations result from rotation of emission beams, the micropulse modula- 

tion is a true temporal modulation. If this is the case, limits on the size of the 

emission source and hence on the equivalent brightness temperature can be derived from 

light-travel-time arguments, if pulse structure with time scale At is observed, then 

the emission region must have a size A£ ~ c At, where c is the velocity of light. The 

corresponding source intensity 

I = S/~ s ~ Sd2/AZ 2 ~ Sd2/(cAt) 2, (i) 

where S is the observed flux density, d is the pulsar distance, and ~s is the solid 

angle subtended by the source. In the Rayleigh-Jeans (low-frequency) limit the equi- 
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valent blackbody or brightness temperature is given by 

T b = c2I /2k~ 2, (2) 

where v is the radio frequency. For the pulse shown in Figure 5, At ~ i00 ~s, S ~ 104 
-2 -i 

Jy = l0 -19 erg cm s Hz -I, d ~ i00 pc ~ 3 x 1020 cm and V ~ 108 Hz. Therefore, 

4£ ~ 3 x 106 cm, I v ~ 109 erg cm -2 s -I Hz -I tad -2 and Tb ~ 3 x 1029 K! Clearly the 

emission from pulsars is nonthermal - some form of coherent process is required. The 

coherence mechanism may involve bunching of particles either in physical space or in 

velocity space, the latter resulting in a maser type of process. Self-absorption li- 

mits the brightness temperature of an incoherent emitter to T k ~ ~mc2/k, where ~ is 

the relativistic Lorentz factor, so for ~ ~ 103 , a value which might be expected for 

electrons (or positrons) in a pulsar magnetosphere, T k ~ 6 x 1012 K. Therefore the 

number of particles which must radiate coherently is n c ~ Tb/T k ~ 1016 . 
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Fig. 5. A single pulse from PSR 0950+08 observed with high time resolution 

showing a quasi-periodic micropulse modulation i0 [5]~6 The ordinate 
scale is in units of janskys (Jy) where 1 Jy = W m -2 Hz -I 

One of the outstanding characteristics of the pulses from pulsars is their very 

high polarization. As shown in Figure 6, almost total linear polarization is observed 

in some pulsars. Circular polarization is also seen but it is usually not as strong 

as the linear. The position angle variations shown in Figure 6 are typical of most 

pulsars. Observations at different frequencies show that these variations are inde- 

pendent of frequency, so they most probably represent the polarization of the emitted 

radiation. These results provide further support to the identification of rotation 

as the pulsar clock, because the observed position angle variations are precisely re- 

presented by the variation in projected direction of a vector fixed with respect to 

a uniformly rotating system, Figure 7. The direction of polarization is normally assu- 
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med to be defined by the pulsar magnetic field. 

For most pulsars the variation of position angle across the integrated profile 
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Fig. 6. Integrated profiles and polarization characteristics for four pulsars showing 
the total intensity, the linearly and circularly polarized components and the 
position angle of the linear component [4]. 
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Fig. 9. Polarization characteristics for a series of individual pulses 
from PSR 0329+54. Polarization ellipses are drawn under the total 
intensity curve with filled ellipses indicating left-circular 
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Orthogonally polarized subpulses may be seen in the trailing 
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is smooth and continuous. However, in others, such as PSR 1857-26 Figure 8, discontin- 

uities are observed. In this and similar cases the discontinuity results from the fact 

that pulses are emitted in two orthogonal modes. Presumably in one mode the emitted 

position angle is parallel to the projected magnetic field and in the other mode it is 

perpendicular to it. The 90 ° transition shown in Figure 8 results when one mode domin- 

ates on one side of the profile and the other mode dominates on the other side. If this 

90 ° transition is compensated for, the position angle variation becomes continuous. 

Orthogonally polarised subpulses are clearly visible in Figure 9, which shows 

the polarization of a series of individual pulses from PSR 0329+54. These orthogonal 

subpulses are one of the factors which result in depolarization of integrated profiles. 

In other cases (e.g. the central component of PSR 0329+54), the individual pulses them- 

selves are weakly polarized. The degree of polarization generally decreases with in- 

creasing frequency - this is normally a result of an increasing randomization of sub- 

pulse position angles, probably because of propogation effects. 

The integrated profile of a given pulsar normally retains the same basic shape 

at different frequencies. However, significant variations do occur. Figure i0 shows 

that different components of integrated profiles can have different spectral indices 

and that the separation of components in double profiles increases with decreasing 

frequency. The lower part of Figure ii shows that the separation follows a power law 

with exponent about -0.25 up to some break frequency and is either constant or slowly 

increasing at frequencies above the break. The widths of individual subpulses seem 

to be relatively independent of frequency. 

Spectra given in the upper part of Figure ii show that pulsars are generally wea- 

ker at higher radio frequencies and that spectra are usually power-law, in some cases 

in two segments. Low-frequency turnovers are also observed in most pulsars, generally 

at frequencies about i00 MHz [9]. Simultaneous observations at different frequencies 

suggest that most subpulses have essentially the same spectrum as the integrated pro- 

file. This implies that the central longitude of subpulses changes with frequency in 

the same way as that of components of the integrated profile. The bandwidth of micro- 

pulses is more difficult to measure; observations at iii and 318 MHz of micropulses 

from PSR 0950+08 [i0] show some correlation of micropulse features, suggesting that 

micropulse bandwidths are also large. 

The luminosity of the pulsed emission from a pulsar is given approximately by 

L = SA~d2We/P , (3) 

where S is the mean flux density, ~ is the bandwidth of the emission, W e is the pulse 
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equivalent width, P is the period and d is the pulsar distance. For a typical pulsar 

S ~ 0.i Jy = 10 -24 erg cm -2 s -I Hz -I, A~ ~ 109 Hz, We/P ~ 0.05 and d ~ 1 kpc ~ 3xl021em, 

so L ~ 5 x 1026 erg s -I. The observed pulsars cover a range of about five orders of 

magnitude in radio luminosity, from 1025 to 1030 erg s -I. 

All known pulsars were discovered at radio frequencies and all but a handful emit 

detectable pulsed radiation only at these frequencies. Optical, X-ray and y-ray pul- 

ses have been detected from the Crab pulsar, optical and y-ray pulses from the Vela 

pulsar and y-ray pulses only from two other longer-period pulsars [ii]. Integrated 

profiles for the Crab pulsar given in Figure 12 show that the pulse profile is broadly 

similar at all frequencies. This pulsar is one in which the profile is double but 

the compnent separation is very wide, nearly half the period. In pulsars with pro- 
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for the Crab pulsar 
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files of this form the weaker pulse component is usually known as the interpulse. For 

the Vela pulsar, Figure 13, in contrast to the Crab pulsar, the profiles in different 

frequency regimes have quite different shapes. The radio pulse is single and narrow 

whereas the optical and y-ray pulses are double and broader and the pulse components 

all occur at different phases. It is notable that the y-ray profiles for all four 

known y-ray emitters are of similar form, with two pulsed components spaced by about 

40% of the period. Spectra for the Crab and Vela pulsars, given in Figure 14, show 

that the relative pulse intensities vary greatly from one frequency regime to another. 

In both pulsars the radio spectra are discontinuous with the high-frequency spectra 

and for the Vela pulsar the optical and y-ray spectra seem discontinuous, suggesting 

that the optical and X-ray emissions are generated by the same mechanism but that dif- 

ferent mechanisms are responsible for the radio and y-ray emissions. 

Because of the much higher frequency, brightness temperatures of the optical, 

X-ray and y-ray emissions are much less than those of the radio emission. For the 

Crab optical emission inferred brightness temperatures are about 109 K, and for the 

X-ray and y-ray emission temperatues are even lower. Coherent emission processes 

are therefore not required for the high-frequency emission. Pulsed luminosities are 

however dominated by the high-frequency emission. For the Crab pulsar the luminosity 

in the optical band is about 5 x 1031 erg s -I, and at higher frequencies about 1035 
-i 

erg s For the other pulsars which are known to emit at y-ray frequencies, the y- 

ray luminosity is about 1033 to 1034 erg s -I. 
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Fig. 13. Integrated profiles 
for the Vela pulsar 
at radio, optical 
and y-ray frequen- 
cies [7]. 
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Two main models have been proposed to account for the pulse emission from pulsars, 

the magentic-pole model and the light-cylinder model. In the magnetic-pole model, 

first suggested by Radhakrishnan and Cooke [13], the beam is generated by charges stre- 

aming outward along open field lines which emanate from polar regions on the star and 

which penetrate the light cylinder. The radiation is assumed to be emitted in a direc- 

tion tangential to the field lines so the angular extent of the radiated beam (and 

hence of the integrated profile) is defined by the angle subtended by the open field 

lines in the emission region. The observed larger component separation at lower fre- 

quencies suggests that lower frequencies are emitted at a larger radial distance from 

the neutron star. As the star rotates, emission is seen from different field lines 

and the varying orientation of these accounts for the observed variations of position 

angle (Figure 7). In the light-cylinder model, first proposed by Gold [14], the emis- 

sion source is located near the light cylinder and the beaming results from the rela- 

tivistic corotation motion as seen by the distant observer. Analogous with synchrotron 

radiation, the observed beamwidth is in the longitude direction and in the 

latitude direction, where y, is the Lorentz factor corresDondin~ to the corotation 

velocity. The beam is directed in atangential direction parallel to the equatorial 

plane. In this model the elementary beams are often identified with subpulses [15]; 

the observed frequency independence of subpulse width is then naturally accounted 

for. 

The noise-like character of micropulses lead Rickett et al. [16] to postulate that 

the observed pulse structure represents a random modulation of a noise signal. Since 

the bandwidth of radio pulses is typically 1 GHz (Figure ii), the basic noise signal 

may consist of "nanopulses", that is, coherent bursts of emission of nanosecond dura- 

tion. The observed signals would then correspond to the incoherent sum of a large 

number of these nanopulses (because of smoothing in the interstellar medium and the 

finite receiver bandpass), giving the noise signal the character of Gaussian random 

noise. Cordes [17] has shown that the statistics of micropulses are consist ~t with 

this interpretation. If different radio frequencies are generated at different loca- 

tions, as suggested above, the duration of nanopulses may be more typically tens of 

nanoseconds, thereby reducing the bandwidth of each emitter. 

The actual mechanisms by which the pulses are generated are not well understood, 

owing in part to the limited understanding of the physics of the pulsar magnetosphere. 

Coherent curvature radiation, i.e. radiation resulting from the motion of particles 

along curved field lines, is often suggested as the mechanism for emission of radio 

pulses in the magnetic pole model. This is emitted in a direction tangential to the 

field lines and is polarized parallel to the plane of field-line curvature. The opti- 

cal emission may be incoherent synchrotron radiation, although, unless it is generated 

by an equal mixture of positrons and electrons, a greater degree of circular polari- 

zation than observed is predicted. A possible mechanism for generation of y-rays is 
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inverse Compton scattering of lower-frequency photons by relativistic particles. 

XI PULSAR PERIODS AND THEIR VARIATIONS - THE BINARY PULSAR 

One of the most remarkable aspects of pulsars is the great stability of the basic 

pulsation period. While the periods are not constant, in many pulsars they are stable 

and predictable to accuracies of the order of a part in 1012. Measurement of periods 

to this accuracy requires observation over a long time interval - one or more years. 

We begin this section with a description of the techniques used to make these measure- 

ments. 

An approximate value for the period of a pulsar, accurate to a part in 104 or 

better, is usually obtained as part of the discovery process. This period is improved 

by measuring the arrival times of pulses separated by longer and longer intervals. 

Arrival times are generally obtained by fitting a standard profile to observed inte- 

grated profiles and typically have an uncertainty of about i00 ~s. In order to deter- 

mine the true pulsar period (apart from an unmeasurable constant Doppler shift result- 

ing from the pulsar's motion with respect to the solar system), the effects of the 

observatory's motion with respect to the solar system barycentre must be removed. 

Barycentric arrival times, ~, which are in an inertial reference frame with respect 

to the pulsar, are computed using 

t b = t + r . n_/c + At , (4) 
s --s r 

where t is the observed arrival time, r is the vector from the solar system bary- 
s --s 

centre to the observatory site, n is a unit vector in the assumed direction of the 

pulsar and At is a clock correction resulting from variations in the transverse Dop- 
r 

pler effect and gravitational redshift as the Earth moves in its elliptical orbit aro- 

und the Sun. This latter term is roughly sinusoidal with an amplitude of 1.6 ms and 

period of 1 year. Arrival times are generally also corrected to infinite frequency 

by removing the delay due to interstellar dispersion. 

The pulse phase at any time t is given by 

= ~0 + ~(t-t0) + ½~(t-t0) 2 ' (5) 

where ~ = 2~/P and ~ are initial guesses for the angular pulsation frequency and its 

derivative and G0 is the phase at time t o . If t and t O are measured barycentric arri- 

val times then ~ - G0 ~ 2~n, where n is an integer. The difference (~-~0 - 2~n)/~ is 

known as the ~es~du~ and is a measure of accuracy of the initial guesses ~ and ~ . 

Figure i5 is an example of the type of residual plot obtained when the initial guess 

for ~ is inaccurate. By least-squares fitting of a polynomial to such residual curves, 
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Fig. 15. Residuals for PSR 0329+54 computed assuming ~=0 
[4]. The parabolic form of the residual curve 
resulting from the non-zero frequency (or period) 
derivative is clearly visible The uncertainty 

in periods determined 

in this way is 6P/P ~ 6t/T~ where 6t is the uncertainty in the measured arrival times 

and T is the total length of the data span. For ~t ~ i00 ~s and T ~ 1 year, ~P/P ~ 

3 x 10 -12 . The corresponding uncertainty in the derived pulsar position is 68 ~ c~t/ 

r rad or 0".05 arc for 6t = i00 ~s. The fact that positions can be determined to 
s 

this degree of accuracy makes possible the measurement of pulsar proper motions. Fig- 

ure 16 shows the sinusoidal residual curve of linearly-increasing amplitude which re- 

sults from proper motion. 

improved values of ~, 

and possibly higher- 

order derivatives can 

be obtained. Because 

of the term rs.~/c in 

equation (4), an addi- 

tional residual term 

will be introduced if 

the assumed pulsar posi- 

tion is in error. This 

term will be sinusoidal 

with period of 1 year 

and by solving for its 

amplitude and phase an 

improved pulsar posi- 

tion can be obtained. 

In all cases where accurate measurements have been made the period derivative has 

been found to be positive; that is, periods are increasing. A typical rate of increa- 

10-15 -i se is s s or 30 ns per year, so the change is slow but nevertheless very sig- 

nificant. The Crab and Vela pulsars have larger period derivatives (about 36 and ii 

ns per day respectively), but, as shown in Figure 17, there is no general correlation 

between period and period derivative. 

The observation that pulsar periods are regularly increasing shows that kinetic 

energy is being lost from the rotating neutron star system. The rate of energy loss 

is 

so for a typical pulsar with the moment of inertia I = 1045 2 g cm (from models of neu- 

tron star structure), ~ = 2~ rad s -I and ~ = -2~ x 10 -15 tad s -2 (i.e. P = 1 s and 
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= l0 -15 s s-l), -W ~ 5 x 1031 erg s -I As was first pointed out by Gold [14], the 

1038 total energy loss rate from the Crab pulsar, ~5 x erg s -1, is just the rate of 

energy input required to maintain the Crab nebula. This discovery solved one of the 

outstanding problems of astrophysics. 
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Fig. 16. Residual curve for PSR i133+16 obtained from 5.5 years of data showing 
the sinusoidal curve of increasing amplitude resulting from proper 
motion of the pulsar. The derived proper motion is about 0".3 arc year -1 , 
which corresponds to a transverse velocity of about 300 km s -I [4] 
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These energy loss rates are several orders of magnitude greater than luminosities 

of the pulsed emission, so the observed pulses carry away a very small fraction of the 

available energy. Before the discovery of pulsars, Pacini [18] suggested that rotat- 

ing neutron stars could lose energy in the form of magnetic-dipole radiation, i.e. 

electromagnetic waves at the rotation frequency ~. The braking torque on the star 

resulting from this radiation is proportional to ~3, so 

= -K~ n , (7) 

where K is a constant and n = 3. The parameter n is known as the braking index. Ener- 

gy may also be lost in the form of relativistic particles; Goldreich and Julian [19] 

showed that for an aligned dipolar field the braking torque resulting from such loss 

was again proportional to ~3. From equation (7) 

n = r ~ l ~  2,  (8) 

so it is in principle possible to determine the braking index by measuring the fre- 

quency or period second derivative. Unfortunately, because of observational limita- 

tions and intrinsic fluctuations in pulsar periods (see below) it has been possible 

to determine the braking index only for the Crab pulsar. From an analysis of five 

years of optical timing data Groth [20] found that n = 2.515±0.005. This is somewhat 

less than the "canonical" value of 3, probably owing to deformation of the magnetic 

field structure by a stellar wind. 

From equation (7) , for n = 3 

PP : (2~)2 K, (9) 

a constant. For both the magnetic dipole and axisymmetric models the constant is pro- 

2 where B 0 is the magnetic flux density at the neutron star surface. portional to B0, 

For I 1045 9 cm2 = , a neutron star radius R = 106 cm and P in seconds, the flux den- 

sity in gauss is given by 

B 0 ~ 3.2 x 1019 (PP)½ (lO) 

Values of B 0 derived from this equation range between i0 I0 and 1013 G with 1012 G 

being typical. 

If a pulsar is born with an initial rotation frequency much greater than the 

present value, then from equation (7) its age is given by 

T = ~/(n-l)~ = P/(n-I)P . (ii) 
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For n = 3, T = ½p~-i is known as the characteristic age. For the Crab pulsar T = 1240 

years, in reasonable agreement with the known age of about 925 years. For other pul- 

sars T is in the range 104 to 109 years(Figure 17). The present value of T represents 

only an upper limit on the actual age of a pulsar. Reasons for this are: the pul- 

sar may have been born with a rotational period only slightly smaller than its present 

value, or secondly, the strength of the pulsar magnetic field may decrease with time. 

The latter effect would result in an increase in the effective value of the braking 

index (eq. 8) and in the characteristic age being an over-estimate of the true age. 

The period variations described above are quite stable and predictable. However, 

in some pulsars at least, the period is subject to quite unpredictable changes. These 

changes fall into two classes: (a) discrete events in which there is an abrupt dec- 

rease in the period; and (b) continuous noise-like variations. The discrete events, 

often known as glitches, have been seen in three pulsars only, namely the Crab and 

Vela pulsars and PSR 1641-45, with those in the Vela pulsar being by far the largest. 

In the Vela events, four of which have been observed so far, the period has decreased 

by about 200 ns. The actual decrease has not been observed; observations limit its 

time scale to about a week but models suggest it occurs in a much shorter time. Fig- 

ure 18 shows three of the jumps in relation to the regular period increase of ii ns 

day -I. The fourth event occurred in 
D~I~ 
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Fig. 18. Variations in the period of the 
Vela pulsar, PSR 0833-45, from 
1968 to 1976 showing three of 

the observed period discontinui- 
ties [4] 

July 1978 (~J.D. 2443700). A change 

of 200 ns in the period of the Vela 

pulsar corresponds to a fractional 

change ~/~ ~ 2 x 10 -6 . For the two 

events observed so far for the Crab 

pulsar ~/~ ~ 10 -8 and ~4 x 10 -8 res- 

pectively and for PSR 1641-45, which 

has a period of 0.455 s, ~/~ ~ 2 x 

10 -7 . In all of these cases there 

was a significant increase in the mag- 

nitude of ~ at the time of the jump, 

with ~/~ ~ 8 x 10 -3 for the Vela pul- 

sar and ~2 x 10 -3 for the Crab pulsar 

and PSR 1641-45. This increase in 

derivative apparently decays in a rou- 

ghly exponential way, with the time 

constant being a few days for the Crab 

pulsar and ~ 400 days for the Vela 

pulsar. 

Following the first observed Vela 
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event, Baym et el. [21] proposed an explanation based on a two-component model in which 

neutron stars consist of a solid outer crust and a superfluid neutron interior. The 

rigidity of the crust is assumed to maintain the stellar oblateness at a value some- 

what greater than the current equilibrium value. The initial period jump was assumed 

to result from a sudden decrease in the oblateness and hence in the moment of inertia 

of the crust toward its equilibrium value - a "starquake". For Vela the observed jumps 

correspond to a decrease in the effective radius of the neutron star of about 1 cm. 

The interior neutron superfluid is assumed to be coupled to the outer crust by a weak 

frictional torque which is proportional to the relative angular velocity of the two 

components. The sudden increase in rotation rate of the crust results in an increase 

in the slowing-down torque and hence an increase in I~]. As equilibrium between the 

two components is restored, the increase in I~I decays away. This model satisfactorily 

accounts for the observed exponential decay in ~I~I . it cannot however account for 
I 

the observed magnitude and frequency of jumps in the Vela pulsar. Various modifica- 

tions have been proposed, including the idea of "corequakes", or sudden changes in 

the moment of inertia of a solid core in the neutron star, but at present there is 

no completely satisfactory explanation for the observed events. 

For many and perhaps most pulsars, the observed periods are subject to small fluc- 

tuations which appear to be random in character. Figure 19 shows residual plots for 

five pulsars. In three of these, significant residuals remain after fitting for sys- 

tematic changes in the period. Clearly, the residuals could be reduced by increasing 

the number of parameters of the fitted curve. However, it is found that subsequent 

observations are not correctly predicted by such fits and that the number of para- 

meters required increases with the length of the data span. Groth [20] found that 

the observed variations in the Crab pulsar were Consistent with a random walk in pul- 

sar period superimposed on the regular changes. Since the individual steps in the 

random walk are not observed, they must occur more often than once per day and have 

an r.m.s, amplitude LIQ/~ ~ 2 x i0 -II. The variations observed in other pulsars seem 

to be accountable for on a similar basis. Pines and Shaham [22] proposed that these 

small changes resulted from a quasi-continuous cracking of the neutron star crust in 

a series of "microquakes". Other models postulate irregularities in the particle flow 

from the magnetosphere. Available data suggest that the irregularities are weak or 

absent in pulsars with very small period derivatives. This may be because of the slow- 

er rate of change of the equilibrium shape of the neutron star crust. Alternatively 

it may indicate a dependence on B 0 (for example, if magnetic stresses in the crust 

were important) or that neutron stars with a large moment of inertia are more stable. 
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In the course of a systematic search for new pulsars at Arecibo in 1974, evidence 

was found for a pulsar whose period was short (59 ms) and extremely variable. Subse- 

quent observations [23] showed that the pulsar was in fact a member of a binary system 

with an eccentric orbit of a very short period. 7 h 45 min. Figure 20 shows the velo- 

city curve derived from the observations. The derived orbital eccentricity is e~0.62 

i0 I0 and a I sin i ~ 7 x cm ~ 1 R@, where a I is the orbit semimajor axis and i is the 

orbit inclination. The observed mass function 

fl = (M2sini) 3/(M1 + M2 )2 ~ 0.13 M@ , (12) 

(where M 1 and M 2 are the masses of the pulsar and its companion respectively), together 

with the small value of a I sin i and the absence of eclipses, showed that the companion 

object must be a compact stellar object. Consideration of possible evolutionary sce- 

narios suggested that a second neutron star was the most likely companion. It was 

immediately obvious that this system would form a nearly ideal laboratory for tests 

of relativity theory. We have an accurate clock in an eccentric orbit with variations 

in both v2/c 2 and GM/c2r of the order of 10 -6 and hence potentially observable. 
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Fig. 20. Velocity curve for the binary pulsar, PSR 1913+16 [23] 

The first relativistic effect to be measured was the periastron advance. Obser- 

vations over a 1,year interval [24] showed that ~ = 4.22 deg year -I, where ~ is the 

longitude of periastron. The magnitude of this effect compared to the 43" arc per 

century predicted and observed for the relativistic perihelion advance of Mercury, 

the only previously observed example, shows the importance of the binary pulsar for 

tests of general relativity. For two point masses in the observed orbit, general rela. 

tivity predicts a periastron advance of 

= 2.11[(M 1 + M2)/Ms] 2/3 deg year -I (13) 

If the observed advance is assumed to be entirely due to general relativistic effects 

(and for two neutron stars this would be the case), then 

M 1 + M 2 = 2.83 M 8 . (14) 

This relation is fully consistent with the system consisting of two neutron stars. 

Searches for pulsed emission from the companion were however negative, indicating ei- 

ther that it is not emitting beamed radiation or that the beam does not intersect the 

Earth. The extended timeing observations also showed that the binary pulsar has a 
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very small period derivative (~9 x 10 -18 s s -1) and thatJ~fortunately) there are few 

if any unpredictable period irregularities. 

Other relativistic effects which are potentially observable include (a) trans- 

verse Doppler shift, (b) gravitational redshift, (c) relativistic time delay across 

the orbit, (d) additional post-Newtonian corrections to the orbit, (e) precession of 

the pulsar spin axis and (f) gravitational radiation. The variations resulting from 

effects (a) and (b) are exactly equivalent to the relativistic correction applied to 

terrestrial clocks (eq. 4). Effects (c) and (d), which result from the curvature of 

space-time in the vicinity of the pulsar are periodic at the orbital period and so 

are more difficult to detect than the periastron advance, which is cumulative. Geo- 

detic spin-orbit coupling results in a precession of the pulsar spin axis which would 

be expected to change the aspect of the beamed emission as seen from the Earth and 

hence change also the integrated pulse profile. General relativity also predicts that 

an orbiting system will emit gravitational waves leading to decay of the orbit and a 

decrease in the orbital period. Elsewhere in this volume McCulloch [3] will describe 

observations in which all of these effects are detected. These results have the poten- 

tial of providing the most sensitive test yet of relativistic theories and represent 

the first observational evidence for the existence of gravitational radiation. 

III PULSAR DISTRIBUTION AND EVOLUTION 

In the ii years since the discovery of the first pulsar, the total number known 

has increased to over 300. Figure 21, a plot of the position of the known pulsars in 

galactic coordinates, shows that there is a clear concentration along the galactic 

plane. This demonstrates (a) that pulsars are galactic objects and (b) that they are 

typically at distances large compared to the thickness of the galactic disk. 

In common with most other astronomical objects, accurate distances to pulsars 

are not easy to obtain. However, pulsars do come equipped with an indicator, their 

dispersion measure, which provides an approximate distance. Because of the presence 

of free electrons in the interstellar medium, the radio signal from pulsars suffers 

dispersion, the magnitude of which is proportional to the integrated electron density 

along the path to the pulsar, 

DM = [ n e d£ , (15) 

J path 

-3 
where DM is the dispersion measure (usually expressed in units of cm pc) and n e is 

the electron density. Fortunately, indpendent distances can be obtained for some pul- 

sars allowing calibration of the mean value of n in the interstellar medium. 
e 



5 8  

*~o"\ , 2 o ' ~  " . - / 6 o  . " .  " 

60 ° 

• : ;:: <° 1 1 ° 
• • e aq • • [" ~ - ,-'.:. - .. • e s "  e #  I , m e  • • 

" ~ . ~ - " ' . " . ' :  "I :J • . . . . / . 2 4 o ,  : . 

- 3 0  ° o ° • " 

. 9 0  ° 

Fig. 21. Distribution of the 321 known pulsars in galactic coordinates 
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The Crab and Vela pulsars are associated with supernova remnants for which distances 

can be independently estimated [25]. Absorption by interstellar hydrogen has been 

detected in the spectra of about 30 pulsars. In most cases these data, together with 

a model for the differential rotation of the Galaxy, give an estimate of the pulsar 

distance. These results show that, although there is some evidence for variations in 
-3 . 

the interstellar electron density, a mean value of 0.03 cm is representative of the 

region of the Galaxy within a few kpc of the Sun. The requirement that <Izl>, where 

z is the perpendicular distance from the galactic plane, be independent of pulsar dis- 

tance shows that the scale height of the electron layer is very large, much larger 

than the scale height of the pulsar distribution. Discrete HII regions also contri- 

bute to pulsar dispersions and these have a small scale height. Pulsar distances have 
-3 

therefore been computed assuming a uniform electron distribution of density 0.025 cm 

together with an exponential layer of scale height 70 pc and density on the galactic 

plane of 0.015 cm -3. Within 1 kpc of the Sun this layer is replaced by individual 

HII regions. The distribution of pulsars projected on to the galactic plane obtained 

when distances are computed in this way is shown in Figure 22. Most of the known pul- 

sars are relatively close to the Sun. As will be described further below, this is a 

selection effect. There is however clear evidence that the density of pulsars is 

greater within the solar circle (i.e. the circle centred on the galactic centre and 

passing through the Sun) than outside it. 
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Fig. 22. Distribution of pulsars projected on to the galactic plane, distances 
are computed from dispersion measures assuming the interstellar electron 
density model described in the text. For clarity, pulsars at distances 
less than 1 kpc from the Sun have not been plotted 

Despite significant deviations, the observed z-distribution, shown in Figure 23, 

is reasonably well represented by an exponential distribution of scale height about 

400 pc. This scale height is much larger than that of massive stars (the likely pro- 

genitors of pulsars) and of supernova remnants (which are assumed to be formed at 

the same time as pulsars). The most probable explanation for this is that pulsars 

are runaway stars which move large distances from their birthplace during their life- 

time. This is supported by the detection of large proper motions in many of the near- 

by pulsars. The constraints on pulsar lifetimes implied by these results will be dis- 

cussed below. 
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As mentioned in Section I, the observed luminosity of pulsars covers a wide ran- 

Figure 24 shows the luminosity distribution of the 224 pulsars detected in the 
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Fig. 24. 0bserv~d distribution of the luminosity parameter 
$400 d E for the 224 pulsars detected in the Second 
MOlonglo Survey 

recently completed Second 

Molonglo Survey [26]. 

Because the spectrum and 

emission beam configura- 

tion is unknown for most 

if not all of these pul- 

sars, the parameter L = 

S400 d 2, where $400 is 

the observed mean flux 

density at 400 MHz and d 

is the pulsar distance 

computed as described, 

is used as a luminosity 

parameter. The distri- 

bution of these pulsars 

in galactocentric radius, 

R, is shown in Figure 25. 
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Both of these distributions are strongly affected by selection effects. All pul- 

sar surveys have a limiting flux density below which pulsars are undetectable. This 

effectively limits the volume of the Galaxy searched for pulsars of a given luminosi- 

ty. The number of pulsars detected in a given survey having galactocentric radii bet- 

ween R and R + dR, z-distances between z and z + dz and luminosities between L and L 

+ dL is given by 

NI(R,L,z)dR dL dz = V(R,L,z) QI(R,L,z)dR dL dz , (16) 

where V(R,L,z)dR dz is the volume of the Galaxy searched and Q(R,L,z)dL is the density 

for pulsars at (R,z) of luminosity L. The Second Molonglo Survey covered the whole 

sky south of +20 ° declination and so did not select significantly against pulsars at 

any z. Equation (16) may therefore be integrated over z to give 

N(R,L)dR dL = A(R,L) Q(R,L)dR dL, (17) 

where A(R,L)dL is an area of the galactic plane and Q(R,L)dL is a density projected 

on to the plane. Provided the distribution in R and L are uncorrelated (and there is 

no reason to suppose that this is not so) the density p can be separated 

Q(R,L) = QR(R) ~(L)/L , (18) 
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where ~(L) is a logarithmic luminosity function, so 

N(R,L)dR dL = A(R,L) PR(R)dR ~(L)dL/L . (19) 

Provided the area A(R,L) can be computed for a given survey, this equation can 

be solved for QR and ~ by iteration [8]. The results of solution of this equation for 

data from the Second Molonglo Survey are shown in Figures 26 and 27. 
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Fig. 26. Luminosity function for 
pulsars in the Galaxy 
derived from data obtai- 
ned in the Second Molon- 
glo Survey 

The derived luminosity function Figure 26 increases steadily with decreasing lu- 

minosity, showing that, if the solar neighbourhood is typical, there are large numbers 

of low-luminosity pulsars in the Galaxy. Because a turnover in the luminosity func- 

tion has not been reached (although the curve is becoming flatter at the low-lumino- 

sity end) we can only derive a lower limit on the total density of pulsars. If we 

neglect the single pulsar in the 0.1-0.3 mJy kpc 2 bin, the projected density of pul- 

sars in the solar neighbourhood is D(10) = 125±40 kpc -2, where the quoted error ref- 

lects statistical uncertainties only. 

Figure 27 shows that the density of pulsars is a strong function of R with the 

maximum density between 5 and 8 kpc. Few pulsars are detected with R > 15 kpc. This 

distribution is similar to that of supernova remnants [25], CO and giant HII regions 

[27], the latter two presumably having a distribution similar to that of massive stars. 

The total number of pulsars in the Galaxy is given by 
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r 
N G = 2~ J RD(R)dR, (20) 

which, for the distribution shown 

in Figure 27, gives N G = (i.0± 

0.4) x 105 , where again the error 

reflects statistical uncertain- 

tiesonly. Various systematic 

effects introduce additional un- 

certainties into this number. 

The most important of these is 

the uncertainty in the distance 

scale. If the mean interstellar 

electron density is less than 

that assumed, then pulsars will 

on the average be more distant 

and their density will be reduced. 

Because of the sensitivity of 

D(10) and N G to the number of 

local pulsars detected, the elec- 

tron density in the solar neigh- 

bourhood (say within 1 kpc of the 

Sun) is especially critical in 

this regard. However, two effects will increase the derived pulsar density. One, 

mentioned above, is the assumed cut-off in the luminosity function. The other arises 

from the fact that essentially all pulsar models assume that the pulse emission is 

beamed (Section I). Because of this a given observer will see only a fraction of all 

pulsars - most models predict that this fraction is of the order of 20%. If this is 

the case then the local density would be ~600 kpc -2 and the total number in the Galaxy 

~5 x 105. 

To determine the birth rate of pulsars in the Galaxy, we must know their life- 

time as active pulsars as well as their density. The fact that pulsars have a limited 

lifetime can be seen immediately from the observed period distribution Figure 1 and 

the fact that pulsar periods increase with time. For a braking index n = 3 (eq. 7) , 

the number of pulsars in logarithmic period intervals (as in Figure l) would be pro- 

portional to p2. Clearly most pulsars stop pulsing when their periods reach 0.8 or 

1.0 s. 

As described in Section II, pulsar characteristic ages represent an upper limit 

to the actual pulsar age. The distribution of characteristic ages for pulsars with 

known characteristic ages less than 2 x 107 years is shown in Figure 28. Of the sam- 

ple of 87 pulsars with known characteristic ages, 20 have ages less than 106 years. 
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T = ½p~-i less than 2 x 107 years [10J 

If we assume that pulsars 

all have the same active 

lifetime, then this life- 

time is 87/20 x 106 years 

or about 4.5 x 106 years. 

travel substantial distances during their lifetime. 

are high-velocity objects comes from observations of interstellar scintillation of 

pulsar signals and more directly from measurements of pulsar proper motion. 

Independent evidence 

for the fact that pulsars 

have relatively short act- 

ive lifetimes comes from 

the observed z-distribu- 

tion. As described above 

(Figure 23), pulsars have 

20 an approximately exponen- 

tial distribution perpen- 

dicular to the galactic 

plane with scale height 

about 400 pc. This rela- 

tively large scale height 

suggests that pulsars 

Indpendent evidence that pulsars 

Optical observations, including data from plates taken over an interval of more 
-i 

than 75 years, show that the Crab pulsar has a proper motion of 0".011±0".001 year 

corresponding to a transverse velocity of about 125 km s -I [28]. Pulsar timing obser- 

vations (Section II) have shown that several pulsars have transverse velocities in 

excess of 300 km s -I. Pulsar proper motions have also been measured by direct radio 

interferometry for several pulsars. In all, pr0per motions have been so far obtained 

for a total of 16 pulsars, with the mean transverse velocity <vt> being approximately 

190 km s -I. Hanson [29] has pointed out that the data sample appears biased toward 

pulsars with larger proper motion and on the assumption that pulsars have an isotropic 
-i 

Maxwellianvelocity distribution derives an unbiased estimate of <vt> ~ 85 kln s 

If we assume that pulsars are, on the average, born close to the galactic plane, then 

their mean age is given by 

<~> : <Izl>/<rvzi>. (21) 

For all known pulsars the value of <Izl> is ~325pc, somewhat less than the scale height 

of the fitted exponential. Since <v > <vt>//2-~60 km s -I = , we have <T> ~ 5.5 x 106 
z 
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years. The mean lifetime of pulsars is just twice this value or i.i x 107 years. This 

value is somewhat larger than but comparable with the mean lifetime derived above from 

the distribution of characteristic ages. 

To calculate pulsar birthrates we shall adopt a mean active lifetime for pulsars 

of 107 years. The birthrate for observable pulsars in the solar neighbourhood is then 

1.2 x 10 -5 year -I kpc -2 and the birthrate for the Galaxy as a whole is 0.01 year -I or 

one every I00 years. This value is in good agreement with estimates of the supernova 

occurrence rate in the Galaxy [25]. It should be emphasized however that it is a lower 

limit to the true pulsar birthrate. If the more plausible assumption, that only 20% 

of all pulsars are observed, is made, then the derived birthrates increase to 6 x 10 -5 

-i kpc-2 year and one every 20 years for the Galaxy. This rate is in excess of the 

galactic supernova rate computed from radio remnants but is in agreement with the rate 

+20 year per event derived from optical observations of supernovae in other gala- of 20_10 

xies by Tammann [30]. 

Creation of a neutron star is a likely end,point of evolution of massive stars. 

Since the lifetime of such stars is much less than the lifetime of the Galaxy we can 

equate the current birthrate and deathrate of these stars. A recent investigation of 

the present-day mass function and birthrate of stars in the solar neighbourhood by 

Miller and Scalo [31] shows that a pulsar birthrate of 1.2 x 10 -5 year -I kpc -2 corres- 

ponds to the deathrate of all stars of mass greater than 13 MS. The lower mass limit 

for a deathrate of 6 x 10 -5 year -i kpc-2 is about 6 MS. Of course, if some of these 

stars do not form neutron stars at the end of their life, the mass limit would have 

to be decreased correspondingly. Models of stellar evolution (e.g. [32]) suggest that 

stars more massive than 4-6 M 8 can form neutron stars at the end of their life. This 

is entirely consistent with the lower mass limits derived above. 
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THE GAMMA RAY SKY AT HIGH ENERGIES. 
THE ROLE OF PULSARS AS GAMMA RAY SOURCES. 

N. D'Amico and L. Scarsi 

Istituto di Fisica, Universiti~ di Palermoj 
Unit~ di Ricerca GIFCO-CNR, Palermo, Italy. 

I INTRODUCTION 

Since the first gamma ray observations of the sky [I], it was clear that the 

Milky Way is a strong source of ganuna ray emission. The second NASA Small Astronomy 

Satellite (SAS-2) was able to confirm the galactic nature of the observed gamma ray 

emission giving more details on its spatial structure and flux distribution [2]. 

However, the interpretation of the SAS-2 team was essentially based on a strong con- 

tribution of elementary diffuse processes. Following this interpretation, gamma ray 

astronomy was suggested to be a "new observational technique for the study of the 

structure and content of our galaxy" [3]. 

An improved picture of the galactic gamma ray emission has been obtained with 

the COS-B satellite and is described in section II. An important new fact is the dis- 

covery of about 30 localized gamma ray sources along the galactic plane (section III). 

Two sources are pulsars (PSR 0531+21 and PSR 0833-45) and one extragalactic source has 

been identified with the quasar 3C 273. The remaining sources are still unidentified. 

It is found that the sources contribution to the observed galactic ga~una ray emission 

could be much greater than ~50%, suggesting that the contribution of elementary diff- 

use processes has to be revised. In this sense, gamma ray astronomy is still provid- 

ing a strong feedback to the current theories on the elementary interactions acting 

in our galaxy. 

The discovery of this new population of high energy sources shows that the gamma 

ray emission is a characteristic feature of a class of astronomical objects. The res- 

ults of a detailed study of the g ~  ray emission from PSR 0531+21 and PSR 0833-45, 

show that the gamma ray observation gives the best insight into the properties of a 

pulsar at high energies. In fact, for these two sources, the energy release is ess- 

entially all in the gamma ray channel (section IV). The detection of pulsed gamma 

ray emission from other selected radio pulsars confirms that gamma ray astronomy has 

now a new role, giving a new access to the primary processes for this class of collap- 

sed objects. A comparison of these results on pulsars with the general properties of 

the unidentified gan~a ray sources suggests a natural link between these facts (section 

V). 
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Fig. 1 (opposite page) 

Contour map (a) of the galactic gan~a ray emission as observed by COS-B 
in the energy range 70 MeV - 5 GeV (January 1979). The iso intensity 
contour interval is 4 x 10 -3 'on-axis' counts per second per steradian, 
and the ordinate is galactic latitude. Longitudinal profiles of 'on-axis' 
counts (in units of counts per second per steradian) of the galactic emis- 
sion are shown in the energy range (b) 300 MeV - 5 GeV; (c) 150 MeV - 
300 MeV; and, (d) 70 MeV - 150 MeV. The shaded regions in (b) - (d) show 
the experimental plus isotropic (90 °) gamma ray background. 
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In the following sections we will describe the present status of gamma ray 

astronomy from the observational point of view. Particular emphasis will be given to 

the description of the gamma ray emission from radio pulsars. The aim of the last 

section will be to discuss the role of pulsars as gamma ray sources and their contri- 

bution to the galactic ganuna ray background. 

The observational material presented here is essentially based on the data of 

the COS-B satellite and is presented on behalf of the 'Caravane Collaboration'. All 

the other discussions are the responsibility of the authors. 

II LARGE SCALE FEATURES OF THE GALACTIC GAMMA RAYEMISSION 

Figure 1 (a) shows a map of the galactic gamma ray emission in the 70 MeV - 

5 GeV energy range as reported by the Caravane Collaboration [4]. This map is a result 

of the analysis of 20 COS-B observations of the galactic plane. About 64000 gamma rays 

were processed and grouped in 0.5°x 0.5 ° bins, and a smoothing procedure was applied 

to give the best representation compatible with the limited angular resolution of the 

telescope. However, because of this smoothing effect, only few compact features appear 

in this map. A different method has been used to search for localised gamma ray sources 

(see next section). 

Figures 1 (b), (c) and (d) show the longitude profiles of the emission in three 

different energy ranges. As can be seen from the figures, more fine structure is vis- 

ible at the higher energies because of the better angular resolution of the telescope. 

Latitude profiles have also been derived from these data and have been used to deter- 

mine the intrinsic thickness of the emissivity taking into account the instrument point 

spread function. Figure 2 shows an example of these latitude profiles together with 

a variation ofthe unfolded angular thickness of the emitting region along the galactic 

disc. As already noted by several authors [5], the spatial distribution of the galac- 

tic gamma ray emission can be easily correlated with many other different galactic 

tracers (ionized hydrogen, pulsars, etc.), so that no final conclusions on the physical 

nature of the emission can be drawn from this picture only. However, as will be dis- 

cussed in the next section, a number of compact gamma ray sources have been discovered 

by COS-B, suggesting that the contribution of elementary diffuse processes to the gal- 

actic emission is less relevant than had previously been estimated. 

III GAMMA RAY SOURCES 

More than 30 localised gamma ray sources have been detected by COS-B to date 

[6-8]' using a variety of analysis techniques. A homogeneus sample for E 7 > 100 MeV 

is now available. For this search [7,8], a cross correlation method was applied: the 

frequency distribution of the arrival directions of photons was correlated with the 

instrument point spread function, as determined by calibrations end confirmed by the 
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Fig. 2. Two examples of the latitude profile of the galactic emission. 
At the bottom: unfolded angular thickness of the emissivity 
along the galactic plane. 
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observations of the strong source PSR 0833-45. 

Table 1 summarises the preliminary positions, error boxes and intensities for 

29 sources detected at energies > i00 MeV. Because of the large error boxes, the 

error Intensity 
1 II b II radius E >I00 MeV 1 II 

6.7 

10.5 

13.5 

36.5 

54.2 

66.0 

75.0 

77.8 

95.5 

106 • 0 

121.0 

135.0 

184.5 

195.1 

218.5 

-0.5 

-31.5 

0.5 

1.5 

1.7 

0.0 

-0.5 

1.5 

4.0 

1.5 

4.0 

1.5 

-5.8 

4.5 

-0.5 
I 

1.0 

1.5 

1.0 

1.0 

1.0 

0.8 

1.0 

1.0 

1.5 

1.5 

1.0 

1.0 

0.4 

0.4 

1.3 

2.4 

1.2 

1.0 

1.9 

1.3 

1.2 

1.3 

2.5 

i.i 

1.0 

1.0 

1.0 

3.7 

4.8 

1.0 

b II 

Table I. 

235.5 ,I.0 

263.6 -2.5 

284.0 -1.0 

288.5 -0.5 

289.3 64.6 

295.5 0.5 

312.0 -1.3 

321.0 -1.2 

327.5 -0.5 

333.5 0.0 

342.5 -2.5 

353.0 16.0 

356.5 0.3 

359.5 -0.5 

error Intensity 
radius E > I00 MeV 

1.5 1.0 

0.3 13.2 

1.0 2.7 

1.3 1.6 

0.8 0.6 

1.0 1.3 

1,0 2.1 

1.0 1.3 

1.0 2.2 

1.0 3.8 

1.0 2.0 

1.5 1.1 

1.0 2.6 

1.0 1.8 

Twenty nine gamma ray sources detected at energies above I00 MeV. 
Intensity values are in units of 10-6ph/cm2/sec. 

identification of these sources with known objects on a purely observational basis 

is difficult. Only two gamma ray sources have been identified with complete cert- 

ainty. These are the Crab and Vela pulsars whose timing signature is unambiguous. 

Another source has been identified with high confidence with the quasar 3C 273 [9] 

The source (353,+16), has been associated with the p Oph dark-cloud complex [8]; the 

measured intensity is an order of magnitude greater than that predicted by Black and 

Fazio [10] for the production by cosmic ray interactions with the gas of the cloud, 

and improved models have been proposed to support this identification [11,12]. 

All the other gamma ray sources still remain unidentified. It is thus 

interesting to study their characteristics as a class in order to gain a better in- 

sight into their physical nature. Figure 3 shows the spatial distribution of those 

sources with ]b I < 15 ° . As shown in figure 4, the latitude distribution of sources 

evidences their galactic nature. It is noted that the mean absolute value of latit- 

udes is <]bl> ~ 1.5 ° , indicating distances in excess of ~2 Kpc for a typical scale 

height of about 70 pc and luminosity values of the order of 1035 erg/sec. 
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This sample still has strong selection effects, because of the variation over 

the sky of the gamma ray background. A more homogeneus sample can be obtained by 

selecting those sources which exceed a minimum flux (~ 1.3 x 10-6ph/cm2/sec) which 

generally permits a detection along the galactic plane. The spatial distribution of 

this subset is shown in figure 5, indicating some concentration within the solar 

circle. 

After the presentation of the first COS-B catalogue of Sources [6], the problem 
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of a search for association with a class of known objects has been discussed by sev- 

eral authors [13-15]. However, no unambiguous conclusions have yet been reached. It 

is noted that no obvious association with strong X-ray or radio sources has been 

found, suggesting that objects which emit essentially in the gamma ray channel do 

exist. 

An interesting situation has been found comparing the characteristics of the gamma 

ray sources as a class, with the SNR distribution in our galaxy. In fact, it has 

been noted that their mean galactic latitudes are equal [13]. On the other hand, dif- 
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Fig. 6. Gamma ray luminosity 
versus age for some 
selected SNR [16]. 
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ferent cases of SNR-gamma ray source association have been suggested by several authors 

[13,16]. We note the work of S. van den Bergh [16] which evidences the gamma ray 

luminosity distribution versus age for some selected SNR (see figure 6). As noted 

by the same author, a fundamental difficulty in testing the SNR-ganuna ray sources ass- 

ociation is that "sources of gamma ray emission might be compact objects with large 

space velocities. Such objects might, during their lifetimes, travel a considerable 

distance from their points of origin." However, for about 50% of the presently known 

gamma ray sources, a SNR is contained within 2 ° of the nominal source position. Fur- 

thermore,in afew cases the gamma ray error boxes contain two or more SNR. These facts 

were noted by B.N. Swanemburg [13] as a suggestion that "regions of the galaxy which 

favour the occurrence of supernovae provide a convenient environment for gamma ray 

sources to exist." However, coupling these facts with the general properties of a 

pulsar as gamma ray emitter, as will be shown in the next section, we will infer that 

pulsars or at least a class of pulsars are the best candidates to be the gala ray 

sources. 

IV GAMMA RAY PULSARS 

The analysis of a pulsar in the ganuna ray energy range necessitates very accurate 

timing parameters (period, period derivatives, position). In fact, because of the 

long observation time required to collect sufficient statistics, a folding of typ- 

ically 107 pulsar periods has to be performed. However, for PSR 0531+21 and PSR 

0833-45, the two strongest sources in the gax~a ray sky, continuous radio observations 

were performed at the epoch of the COS-B ganm~ ray observations, so that very precise 

pulsar parameters were available. Thus a detailed study of their light curves and 

energy spectra in the gamma ray range is possible. The results of this study repres- 

ent the best availableinsight into pulsar behaviour at very high energies. 

(a) PSR 0531+21 (THE CRAB PULSAR) 

The Crab pulsar was identified as a gamma ray emitter by several groups of 

experimenters using balloon borne gamma ray detectors in the early seventies [17]. 

The satellite SAS II was able to confirm the nature of PSR 0531+21 as a gamma ray 

source, giving details on the light curve and a significant value for the flux. The 

pulsar was observed by COS-B from August 17 to September 17 1975 and again from Sept- 

ember 30 to November 2 1976. 

Figure 7 shows the gamma ray light curve of PSR 0531+21 for energies ~ 50 MeV 

as resulting from the first COS-B observation [18]. As can be seen, the light curve 

structure is dominated by two peaks separated by 0.42 in phase (13.5 ms). The 

pulse widths are respectively 1.5 ms and 3.0 ms. The same figure also shows the 

X-ray light curve derived using the data from the small X-ray detector on board 
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COS-B. The ga/rma and X-ray light curves are strictly similar with the exception 

of the absence of gannna ray emission between the first and second pulse. Otherwise 

the Crab pulsar exhibits a similar pulse shape at all frequencies (see figure 8). 

I 

I I 

i I 

optical i 

. . . .  i 
I 

~ . ~  radio I 
I , 

4 8 1'2 16 2'2 
time (ms) 

Fig. 8. Comparison of the Crab pulsar 
light curves at various fre- 
quencies. 

Figure 9 (a) shows the pulsed spectrum for PSR 0531+21 in the range 50 MeV - 1 

GeV. The spectrum can be well fitted with a single power law: 

F(cm-2sec-IGeV -1) = (2.0 -+ 0.7).10 -7 E -(2"17 + 0.0 7)(with E in GeV). (i) 

The spectrum of the total emission from the Crab Nebula has been also derived by spa- 

tial analysis. This spectrum is shown in 9 (b) compared with the pulsed spectrum 

(dashed line). It has been found that the Crab Source is 100% pulsed above 400 MeV, 

while in the energy range between 50 MeV and 400 MeV the pulsed emission contributes 
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only between 45 and 65% to the total emission. [25] 

(b) PSR 0833-45 (THE VEIM PULSAR) 

The Vela pulsar, PSR 0833-45, is the brightest source at gamma ray energies. 

It has been observed twice by COS-B from October 20 to November 28 1975 and from July 

25 to August 24 1976. 

Figure i0 shows the Vela light curve for E ~ 50 MeV as results from the 1975 

and 1976 COS-B observations. Several features can be distinguished in this light 

curve: two clear peaks are visible centred respectively at phase values #1 = 0.12 and 

~2 = 0.54. Their widths are 3 ms and 6 ms. Between the two pulses and after the sec- 

ond one, significant emission is detectable. Different phase intervals have been de- 

fined for this light curve as indicated in figure I0 and summarised in Table 2. As 

will be discussed in the following, these pulse components show different spectral 

properties [19]. 

r 

It is noted that, while the main features of the Vela light curve (i.e. the two 

pulses distant 0.42 in phase) show similarities with the gamma ray light curve of the 

Crab pulsar, the behaviour of these two pulsars at lower energies is quite different 
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f 
- ray 

radio 

i i 

0.6  
phase 

Component Phase Interval 

Background 

First pulse 

First trailer 

Second pulse 

Second trailer 

0.77 - 0.05 

0.05 - 0.17 

0.17 - 0.49 

0.49 - 0.58 

0.58 - 0.77 

Table 2. Phase intervals for the Vela 
light curve 

(figure i0). Comparison between the radio, optical and gamma ray measurements on Vela 

for example shows that the respective light curves are different in shape and phase 
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position over the whole electromagnetic spectrum [19,20]. (No clear X-ray pulsation 

has been detected so far from this pulsar and various upper limits have been reported 

[21-23]). The near symmetric location of the optical pulse between the gamma ray 

pulses has been noted by Manchester and Lyne [24] as a suggestion that the optical and 

gamma ray beams originate from a single polar region, with the gamma ray components 

emitted closer to the light cylinder. 

Figure Ii (a) shows the pulsed Vela spectrum from 50 MeV to 3 GeV [25]. The 
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Figure ii. (a) Pulsed y-spectrum of PSR 0833-45, and (b) total spectrum for the Vela 
source at y ray energies. In both cases the straight line is given by 
equation (2). 

spectrum can be well fitted with a single power law of the form: 

F(cm-2sec-)GeV -I) = (1.35 ± 0.4) 10 -6 E -(1"9±0"03) (with E in GeV) . (2) 

The differences between this spectrum and the one previously reported by the COS-B 

Collaboration are mainly due to a different definition of the pulsed components in the 

light curve. From the spatial analysis of the measured gamma rays, the energy spectrum 

for the total emission from the Vela gamma ray source was determined [25]. The result 

is shown in figure ii (b). In the range 50 MeV - 3 GeV, the spectrum can be fitted 

with a single power law: 
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F(cm-2sec-iGeV -I) = (1.6 ± 0.4)'I0-6-E -(1"9±0"05) (with E in GeV). 

A comparison of the total spectrum with the pulsed one (dashed line in figure iI (b)), 

shows that within the statistical uncertainties the two spectra are identical. 

.~ 2.01 I . T ~  

g 
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0 

g 
a 

100 1000 

Fig. 12. PSR 0833-45: ratio of counts in a 
pulse component relative to the 
counts in the first pulse as a 
function of energy. 

E~ (MeV) 

The spectral properties of the different components defined for the Vela light 

curve have been studied in detail by Kanbach et.al. [19]. Figure 12 shows the counts 

ratio between the different components and the first pulse as a function of energy, 

suggesting spectral differences. 

(c) OTHER GA~ RAY PULSARS 

The fact that the only two identified gamma ray sources are pulsars, could be 

simply related to observational reasons: the gamma ray telescopes have intrinsically 

poor angular resolution, but can have good time resolution, typically ~0.3 ms, in the 

case of COS-B. Thus the time signature of the emission may provide the only sure ident 

ification of a source. 

The gamma ray emission is important in a more fundamental sense however. In the 
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cases of PSR 0531+21 and PSR 0833-45, the gamma ray emission plays a major role in 

the pulsar energy release, with a ratio between the gamma and radio luminosity as high 

as ~I0 s. This fact suggests that the gamma ray emission could be the dominant feature 

of pulsars. In this sense, gamma ray astronomy becomes a unique probe into the physics 

of pulsars and their evolution. 

In the following we will describe some preliminary results of a search for pul- 

sed Y-ray emission from some selected radio pulsars as reported by the COS-B Collabor- 

ation. This guided search adopted the phenomenological approach suggested by Buccheri 

et.al. [26] to select some candidates from the radio catalogues. It used a 'priority 

parameter' defined as the ratio E/d 2, where E is the pulsar rotational energy loss and 

d its distance. 
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Fig. 13. Light curves dervied from COS-B measurements: (a) for PSR 1822-09, 
and (b) for PSR 0740-28. Note particularly that the twin peak 
structure characteristic of a pulsed signal is evident only at 
ZoW energies in the former case and at only high energies in the 
latter case. 
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This approach is to be contrasted with the random search through the radio cata- 

logues carried out by the SAS-2 team [27]. This search was based essentially on a 

straightforward X2-test on the phase histograms obtained by folding the photon arrival 

times with the values of the period P and its derivative P extrccpolated to the epoch 

of the >-ray observations. This search technique yielded only PSR 1747-46 as a gamma 

emitter [28], with an estimated flux of ~0.3 of the Crab flux (E ~ 30 MeV). Moreover 

for PSR 1747-46 the available radio measurements were nearly eonte~YpoPGr~j to the SAS-2 

observation. This was not the case for most of the other pulsars, so that the claimed 

negative result has to be considered inconclusive. 

To overcome this problem, a scanning procedure around the nominal value of the 

radio period was applied by the COS-B team for their search [29]. A statistical anal- 

ysis of the results was performed also taking into account the spatial distribution 

of those gamm~ rays selected from the time analysis. As a first result of this search, 

two new g ~  ray pulsars, PSR 1822-09 and PSR 0740-28, have been detected by COS-B 

[29 ]  ; 

Figure 13 (a) shows the gamma ray light curves for PSR 1822-09 in two different 

energy ranges, 50 - 150 MeV and 150 - 500 MeV. As can be seen from the figure, a 

clear pulsation effect is present at low energies, while the phase histogram is quite 

flat at higher energies. The pulse shape is dominated by two peaks with a phase sep- 

aration of ~0.4. 

On the other hand, in the case of PSR 0740-28, the pulsed signal is present only 

at higher energies (see figure 13 (b)). However, in this case also, the dominant feat- 

ures of the gam~m~ ray light curve are the two peaks separated by 0.4 in phase. The 

flux values derived by COS-B for these two pulsars are summarized in Table 3. 

Energy range PSR 1822-09 PSR 0740-28 

50 - 150 MeV (7.8±1.5) x 10 -6 <1.3 x 10 -6 

150 - 500 MeV <1.4 x 10 -6 (4.7±1.3) x 10 -7 

Table 3. Flux values derived by COS-B for PSR 1822-09 
and PSR 0740-28, in units of ph/cma/sec. 

V THE ROLE OF PULSARS AS GAMMA RAY SOURCES 

Table 4 summarises the gamma ray luminosity, age and rotational energy loss 

values for the detectedga=ma ray pulsars. We infer from this table that the ganm~ 
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PSR Ga~una ray luminosity Rot. Energy loss 

0531+21 

0833-45 

1822-09 

0740-28 

1747-46 

1.9 x I03s erg/sec 

4.0 x I03~ erg/sec 

9.0 x 1033 erg/sec 

2.9 x I03~ erg/sec 

7.8 x 1038 erg/sec 

7. x 1036 erg/sec 

4.0 x i03s erg/sec 

1.5 x 1035 erg/sec 

2. 

2. 

Table 4. 

Age 

923 yrs 

i0 ~ yrs 

x 105 yrs 

x l04 yrs 

6.2 x I033 erg/sec 6.6 x 1033 erg/sec 1.6 x 105 yrs 

l- 

Relevant parameters of gamma ray pulsars. Age values for 
PSR 0531+21, PSR 0833-45 and PSR 0740-28 are assumed to be 
equal to the age of the associated SNR (32,33). 
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Fig. 14. The gamma ray luminosity of pulsars compared with the gamma ray 
luminosity of some SNR. The dashed line (b) is the E value versus 
age expected for a pulsar with braking index n = 3. 

ray luminosity is a smoothed function of the pulsar age, at least for age values up to 

~ 5 x 105 yrs. Figure 14 shows the gamma ray luminosity versus age for these pulsars 

compared with the gamma ray luminosity of some SNR as already reported in section I~I. 
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The dashed line (b) is the expected value for the total rotational energy loss E as a 

function of age for a pulsar with braking index n = 3, normalised to the measured 

value for the Crab pulsar. A cut off in the gamma ray emissivity could be expected 

for older pulsars, i.e. when the gamma ray luminosity is of the same order as the 

total rotational energy loss. As can be seen from the figure, the luminosity values 

for the gamma ray pulsars show a trend, fitting with the extrapolation of the gamma 

ray luminosity distribution suggested for the SNR (cf. figure 6). In this sense, ack- 

nowledging the limitations of the small sample available, these results support the 

earlier suggestion for the gamma ray source-SNR association, with the gamma ray pul- 

sars as the missing link. 

Assuming this trend for the gamma ray luminosity versus age to be representative 

of the pulsar evolution, the contribution of pulsars to the total galactic gamma ray 

emission can be estimated. Following figure 14, we assume for the gamma ray luminosity 

versus age the relation: 

L (T) = 
Y 

2.4 x 103IT -0"7 erg/sec for T 5 5.8 x 105 yrs (3) 

E(T) = 7.5 x I0~ T -2 erg/sec for T > 5.8 x 105 yrs. (4) 

Adopting a value for the pulsar birth rate T, the contribution up to a given age T 
0 

can be computed from the integral: 

T 
L = (l/T) [ OdT.L (T). (5) 

Jo Y 

For a birth rate value of 25 years the contribution to the integral in equation 

(5) coming from the "young pulsars" (i.e. those described by the luminosity function 

(3) and having T S 5.8 x 105yrs) is L = 1.7 x 1038 erg/sec, while that arising from 

the older pulsars (luminosity given by (4) and having ~ > 5.8 x 105yrs) is ~ 5 x 1037 

erg/sec. The latter contribution must however be considered as an overestimate because 

of the extreme assumption that the garmua ray luminosity remains equal to the rotational 

energy loss up until the end of the pulsar life. In any case the dominant contribution 

comes from the younger pulsars, and we can estimate 1.7 x 1038 5 L < 2.2 x 1038 erg/sec. 

Thus, in terms of the total gamma ray luminosity of our galaxy, which has been estim- 

ated to be ~ 5.1038 erg/sec [30], the pulsar contribution ranges between 35 and 45%. 

the upper value depending on the behaviour of the older pulsars. 

While these conclusions are essentially based on the assumption that the trend 

of the gamma ray luminosity versus age as sketched in figure 14 is representative of 

the pulsar evolution, the characteristics of young pulsars a8 G popu~Gtion (galactic 

distribution, scale height, etc.) lend weight to the hypothesis that they are good 

candidates to be counterparts of a large fraction of the observed gamma ray sources. 
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That older pulsars could also contribute with some percent to the general galactic 

galena ray background is likewise consistent: their higher scale height [31] would 

fit with the broader component of themeasured gamma ray latitude profiles. 

VI CONCLUDING REMARKS 

No longer should one view gamma ray astronomy only as a technique for the study 

of elementary interactions in our galaxy. It is evolving into a powerful new tool 

for the investigation of the primary processes occurring in collapsed objects. Typical 

of this new role is the information that gan~na ray emission appears to be the privil- 

eged channel for energy release from pulsars, and that despite the variability of pul- 

sar light curves in the low energy regime (optical, radio), the gamma ray light curves 

are remarkably similar from one source to another. These facts indicate that gamma 

ray emission is a common primary feature of these objects. 
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To further strengthen the association between g ~  ray pulsars and the observed 

ray sources, a guided pulsar search should be undertaken from radio laboratories. 
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COMPACT RADIATION SOURCES IN ACTIVE GALACTIC NUCLEI 

A. Cavaliere 

Universita degli Studi-Roma, Istituto di Fisica "Guglielmo Marconi" 
Piazzale delle Scienze, 5 1-00185 Roma, Italy 

I ACTIVE NUCLEI AND COLLAPSED OBJECTS 

It has been established for a number of years (cf. Conclusions of the Study Week 

on Nuclei of Galaxies [i]) that a large fraction of Galactic Nuclei exhibit within 

their central several parsecs various degrees and forms of activity including: emission 

of bright optical lines covering a wide range of ionization stages (from [O I] to [Fe 

X]); powerful emission (often in the order of 1045 and sometimes up to several 1047 

erg s -1) of continuous, non-stellar radiation ranging from the Infra-Red to the Opti- 

cal and Ultra-Violet bands, and extending into the X-rays; emission at radio frequen- 

cies characterized by compact, variable components of ~ 10 -4 arcsec at the nucleus, 

and often by much larger, far outlying radi0-volumes extending in some cases up to 

some Megaparsecs; motion of gaseous masses with velocities up to 10,000 Km s -I. Total 

energy outputs have been estimated from the energy content of the extended Radio-struc- 

tures, or from the product of observed O-IR power multiplied by the inferred lifetimes, 

and results in the range of 1060 - 1062 erg. 

The objects showing more clear and intense phenomena of these kinds have been 

grouped under the categories of Seyfert Nuclei, Quasars, BL lac-type objects (for de- 

fining properties and detailed reviews of related data see [2-4]). But from the be- 

ginning (cf. [5] and previous references) various lines of evidence have strongly sug- 

gested relationships of continuity between these classes in some of their activity 

forms, and hence presumably a deep kinship in the underlying physical mechanisms. One 

basic issue is by now agreed upon, that the primary energy source of all activity is 

gravitational, and that the prime mover must be some kind of collapsed object - whe- 

ther a compact, collectively acting aggregate of pulsars [6] or a massive, rotating 

and magnetized body [7,8], or finally a massive Black Hole (BH) [9]. Strong evidence 

pointing toward this general direction is provided by the small sizes associated with 

the emissions: not only radio interferometry directly resolves central components of 

1 pc, but also violently variable QSO and BL Lacs are known to vary their optical 

continuous luminosity in time-scales At as short as 1 day, and possibly down to a few 

hours; recent data suggest comparable variability in X-rays at least in Seyferts [i0, 

ii]. All that implies (in the absence of bulk relativistic motions) source sizes down 

to R = At/c = l015 cm. In these conditions, nuclear energy is irrelevant: 1061 erg 

of nuclear energy would imply, at the efficiency of nuclear burning ~0.01, a mass 

M > i061/nc2 = 109 MS, which in the process of gathering within R ~ 1015 cm would have 
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Fig. i. A collation of spectral data concerning two Seyfert 1 galaxies, one quasar, 
and two BL Lac objects. Adapted from: for NGC 4151, ref [58] (data uncor- 
rected for reddening and contamination); and from [59] and references there- 
in. For 3C 120 and 3C 273B, ref [28]; for the latter, the X-ray data are 
taken from [22], and the y-ray data from [15] have been fitted with a slope 
1.2. For Mkn 501, ref [27]. Sources of data for BL Lac: radio, [60,61]; 
optical, [62]; X-rays, [63] 
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released G M2/R > 1062 erg in gravitational energy [12]. For comparison, the Schwarz- 

child radius of a BH of 108 M 8 solar masses is R s = 3.1013 M 8 cm. (The following no- 

1045 1 tation is used throughout: M = M 8 108 M®, L = L45 erg sec- etc.). 

The actual nature of the underlying collapsed body (or bodies) is not yet clear, 

nor are established the actual processes that convert the gravitational energy into 

radiation and relativistic particles. Here we address mainly the latter problem as 

for the continuous radiation (especially the bands from IR to X-rays), the channel 

where Active Nuclei appear to emit most of their power and where the similarities are 

most pronounced: the line of attack will be that of first discussing exact constraints 

to the conventional radiation mechanisms, derived directly from the observational data; 

and then of establishing what new properties source structure and emission must possess 

to conform to the data, independently of detailed modeling. The scope is to set up 

general conditions that any future, self-consistent electrodynamics of the source must 

fulfill, much in the spirit of the discussion of pulsars by L. Mestel in this volume. 

II CRUCIAL OBSERVATIONAL RESULTS 

This section is meant to recall briefly those data that most stringently constrain 

any interpretation of the continuous emission from Active Nuclei. 

The continuous radiation is "compact", compactness being measured by the ratio 

= 1045 1 L/R: a total luminosity L45 L45 erg s- or more, and a source size R = 1015 

RI5 cm or less, result in a value of L/R > 1030 L45/RI5. The significance of this 

quantity is as follows: the probability for any electron (relativistic or not) to 

collide with a photon within the source is very large Te> = ~T LR/4~R2 ch9 = 105 L45/ 

RI5 ~15; other optical depths as well increase proportionally to L/R. In these con- 

ditions, the associated opacity processes must either fix lower bounds to the source 

size, or effectively shape the power distribution across the e.m. spectrum. 

The spectral distributions, in fact, appear remarkably uniform in their general 

behaviour: the output L is concentrated in the IR-O region (~ from 5.1012 to 1015 Hz) 

and in the X-rays (9 = 5.1017 to 1020 Hz), the shape being approximated by two power 

laws F ~ ~ with a slope often steeper in the former region (~ ~ I) than in the lat- 

ter (~ < i, in many cases ~ ~ 0,5). 

Linear polarization in the O and near IR is high (up to 30%) in many BL Lacs, 

relatively ~-independent, and rotates rapidly in At = 10h; several violently variable 

QSOs show similar, if scaled down, behaviour [13,14]. Thus a well ordered geometry 

is cogently indicated, and synchrotron radiation is strongly suggested. 

The radio emission, though it ranges widely in intensity from object to object, 



91 

yet in many BL Lacs and in a number of QS0s comprises a sizeable fraction of the total 

output; brightness, spectrum and polarization establish its non-thermal, synchrotron 

origin. Important information is added by the recent discovery of a dominant y-ray 

emission from 3C 273 [15], as discussed below. 

III THERMAL VS. NON-THERMAL EMISSION PROCESSES 

The basic emission processes discussed for the Active Nuclei are in effect scaled 

up versions of those interpretations that have been successfully associated with such 

G~d~etypio~Z galactic sources as Cyg X-I (thermal emission by the electrons of the 

plasma heated up in a rotating disk slowly accreted into a BH) and the Crab Nebula 

(non-thermal emission from highly relativistic electrons accelerated by coherent e.m. 

fields around a magnetized rotating body). 

Models based on thermal emission arising from accretion flows around massive black 

holes have interpreted the IR radiation [16] or the X-ray radiation [17,18], severally. 

However, at the low-frequency spectral end, purely thermal processes cannot account 

for the synchrotron origin of R emission. At the other end, hard photons (h~ > 102 

keV) emitted thermally from accretion disks must come from the very inner region, at 
+ 

R = 5R s. But then the photon opacity under pair production y + y = e + e , T± = L45/ 

R45 at the threshold 2h~ = 1 MeV, must intervene: Cavallo and Rees [19] and Lightman 

et al. [20] have pointed out constraints of compatibility between spectral extension 

and size intrinsic to these models. More generally, since above h~ = 1 MeV T± increases 
6 

proportionally to (hg) , 6 being the slope of the X-ray source that should extend its 

emission into the y range, copious y-rays of energy exceeding several MeV can never 

escape as such from regions of size smaller than 1015 - 1017 cm, depending on power 

and slope 6 [21]; in the case of 3C 273, 6 ~ 0.5 in the X-ray range [22], and L = 1046 
-1 

erg s at i00 MeV imply R > 5 1016 cm, apparently outside the capabilities of purely y ~ 

thermal emission from an accretion model at least in its disk version. 

While these difficulties might be overcome by assuming a suitable - in some case 

dominant! - admixture of high energy processes, they clearly motivate a discussion 

of the alternative extreme, a fully non-thermal, unified interpretation. Note that 

in view of the high value of Tey ~ 105 L45/RI5 ~15 ' thermal and non-thermal inter- 

pretations must agree on the issue that the X-rays are generated by inverse Compton 

up-grading of softer photons; they differ, of course, as to the ratio of electron to 

seed photon energies, £/h~, hence as to the number of scattering events required. 

IV CONSTRAINTS TO NON-THERMAL EMISSION MECHANISMS 

Non-thermal interpretations are best discussed in terms of the energy equation 

for the electrons (E = ymc 2) 
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d£/dt = p - Pr (i) 

where p = ec~-E is the gain rate, while the radiative loss rate P 
r 

combination of steady or travelling e.m. fields E, B by 

is given for any 

Pr = ((~T %/2c1417) [E2(I-(~--'E--/E) 2) + l~--xB--12- 28-ExB] ; (2) 

CT being the Thomson cross-section. This form contains for E = O the pure synchrotron 

limit (henceforth S), as well as the inverse Compton (IC) scattering on incoherent e.m. 

waves. From Eq. (i) a radiative time scale may be defined for both S and IC processes: 

t = mc2/C_cw~ where the relevant energy density is w B = B~/4~- for S losses, and Wph = 
r 2 T 

L/4~c R for IC losses. The time scale for acceleration is t a = %/mc2/p. These times 

should be compared with the relevant transit times. We will consider mainly a spheri- 

cal source of radius R and thickness AR crossed by a constant flux f = 4~R 2 nv of elec- 

trons at a speed v; the latter then reside in the source for a time t = AR/v. On the 
c 

other hand, the minimum time scale for variability (in the absence of relativistic 

bulk motions) is t = R/c, with t < t for R < AR. 
V V ~ C 

The classical non-therrm~l model (often refered to as synchrotron - Self Compton 

emission, SSC) assumes injection into the radiative volumes of electrons already at 

the required energy, that is, the term p drops from Eq. (i) and is replaced by an 

initial condition; the electrons just lose some of their energy by S emission (observed 

at radio and microwave frequencies) and by IC scattering (which upgrades some photons 

into the X-ray band). With the same electrons scattering off the very photons they 

emit, this model achieves the goal of unifying the R and X-ray outputs; the corres- 

ponding spectral slopes must then coincide, and the time changes should be correlated 

(for recent discussions see [23,11]. The model can be characterized by the conditions 

t r ~> t c, >> tv. (3) 

In fact, the relatively slow flux decrease observed in the nucleus of NGC 5128 has 

been attributed by Mushotzky et al. [24] to subrelativistic source expansion; the con- 

sequent adiabatic losses would contribute a term -e/R on the right hand side of Eq. 

(i), associated with a time scale t e ~ R/R >> tv, and would decrease further (cf. 

Eq. (3)) the overall efficiency. These authors have complemented the classical model, 

plausibly interpreting the far IR emission from the same object as thermal re-radia- 

tion from dust that absorbs the soft X-rays; appeal is made to the presence of much 

dust and gas across the optical image of the galaxy, though to be sure the material 

directly observed is far more diluted and extended than the X-ray absorbers proposed. 
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Yet in other cases strong IR emission must be totally independent of X-ray absorb- 

tion. This is plain in BL Lac objects where there is neither optical (spectroscopic) 

evidence of much circumnuclear matter nor signs of low-energy absorption in the several 

X-ray emitters detected so far [3,26,27]. The IR and optical emission of the BL Lacs, 

with their variability and their high degree of optical polarization, must be domi- 

nated by non-thermal emission within well ordered magnetic geometries. On the other 

hand, when the classical non-thermal model is extended to include in its S emission 

the IR and O bands, even in less extreme objects like 3C 120, NGC 1275 and III Zw2, 

it must be stretched to admit t r << tv, t c [23,28,29]. 

Such a short, and strongly energy dependent, lifetime disagrees with the flat, 

featureless nature of the observed X-ray spectra, unless continuous acceleration sus- 

tains the electron energy distribution. NGC 4151 is perhaps the extreme case to date 

for high frequency behaviour: the IR - O with L z 1044 erg s -I, varies on a scale of 

a month [30,25] and hence is presumably non-thermal; moreover, to produce the L > 1044 
-I 

erg s observed in the tens to hundreds key range the classical non-thermal model 

would imply t < is << t [31], t itself having been set at about 105 s by Mushotzky 
r v v 

et al. [24]. 

That t should be small in all such cases is a direct and general consequence of 
r 

the high photon induced opacity of the source to the flow of relativistic electron 

energy: indeed, the ratio of t (or t ) to t reads, using the definitions given at 
v c r 

the beginning of this section, as: 

tv/t r = GTNRAE/E # (4) 

where Ae = y2h~ is the energy lost by an electron in a "scattering" event, and N = 

w/h~ is the "photon" density. The expression includes both the true IC scattering 

and the S process, in which case the photons are virtual with equivalent energy h~ B = 

~eB/mc and contribute to w a term w B = B~/4~. The ratio Wph/W B = L/cR2B~ discriminates 

which process actually dominates. If the IR - O radiation is ascribed to the S emis- 

sion, then L/cR2B~ < 1 must hold in this band; hence from Eq. (4), with the usual ex- 

pression of the S peak frequency ~ ~ 106 B 1 y2, the condition 

i/2..3/4 . 1/2 
tr/tv < 2"10-4 5dv /u45 v15 (4a) 

obtains (where tdv is t v measured in days and taken as a true measure of size). If 

the X-rays are produced by IC scattering of the primary photons emitted in the IR - O, 

then using also the expression for the average frequency of the scattered photons ~ = 

2 ~O' the relation 
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tr/t v = 10 -3 tdv/L45 (~19/~14)1/2 (4b) 

obtains. Note that if no cut-off is observed at frequencies ~ lO 19 Hz, the corres- 

ponding seed photons must satisfy the relation 

1/2 .1/4 t-l/2 -1/4 
~13 ~ 2 u19 ~45 dv (L/CR2B2) (4e) 

It may be asked whether the problem of short life-times could be solved by appeal- 

ing to oontinuou8 i~otion of fresh energetic electrons into the source. However - 

even setting aside the problem of the resulting spectral distribution - Blandford and 

Rees [32] have shown that electrons spending their energy in such short times t to 
1045 -i r emit L ~ erg s , and then idling at subrelativistic energies within a source 

with R < 1015 ~ cm, accumulate to such a density n that the optical depth to photon scat- 

tering, OT n R, becomes larger than unity so that the original time variability and 

polarization are washed out; the latter would be confused also by the resulting large 

value of the Faraday rotation. In fact, assume that the electrons are not re-accelera- 

ted within the source; then using the steady state condition L = f ymc 2 and the expres- 

sions for the S emission as used to derive Eq. (4a), the requirement OT n AR < 1 trans- 

lates into the limitation 

.5/6 -1/3 (4d) 
tdv > 2 ~45 v15 

Similarly, the bound to the Faraday rotation angle ~ = ~ ~B ~R/2c 2 < 1 (where ~p 

is the plasma frequency (4~ne2/m) i/2), using the same expressions, translates into 

the limitation 

.7/10 -1 (4e) 
tdv > 3 b45 ~15" 

In other words, not even continuous injection can insure conditons consistent 

with the data when ~T NR Ae/e = ~L45/RI5 > i. The conclusion must be drawn that, while 

the conventional non-thermal model may adequately describe sources in weak, relatively 

steady activity stages, one must go beyond that framework towards more extreme con- 

ditions to account for the emission of truly powerful and variable nuclei. 

V EXTREME NON-THERMAL EMISSION: RADIATION UNDER CONTINUOUS ACCELERATION 

The above constraints can be satisfied under either of two extreme conditons. 

Blandford and Rees [32] propose relativistic outflow of the emitting material aimed 

very nearly toward the observer; bulk Lorentz factors F ~ i0 are needed to explain 



95 

ultra-luminos objects like AO 0235 + 164 (L = 1048 erg s -I, t = 1 day during the out- 
v 

burst of November 1975), considering that in the comoving frame L is reduced by a fac- 

tor F -2, while At and transverse dimensions are increased by F. The probability of a 

suitable orientation is only ~/43 = F -2 but the luminosity selection would favour the 

jets aimed at the observer. While jets are in fact features revealed in Active Nuclei 

especially by radio observations, Moore et al. [33] note that in this framework one 

would expect the highest L to be associated with the shortest time-scales of varia- 

bility, whereas At = 1 d is observed over a wide range of luminosities. In spite of 

this lack of implied evidence, the proposal appears as a viable and intriguing one; 

the reader is referred to [32,9] for detailed models and further discussion. 

Alternatively, a quasi-isotropic geometry can be retained, but full use must be 

made of the electrons present, by repeated acceleration. We tackle here this alterna- 

tive, and proceed to examine what non-thermal processes can take place consistently 

under the condition tr/t c << i. Eq. (4) suggests that the number of interactions per 

electron multiplied by the energy loss per interaction should be very large, that is, 

the total energy lost by an electron during its traversal of the source should be much 

larger than its instantaneous energy. This requires continued re-acceleration: for- 

mally, the acceleration term p in Eq. (i) must be finite and r~levant throughout the 

radiative region. 

It follows then that the ratio tr/t c cannot be arbitrarily small, rather it must 

admit a l~rm~ti~ value, to which the source conditions actually tend. For, after Eqs. 

(i) and (2) specialized for S and IC losses, as e rises the term Pr grows with £2 and 

soon reaches a balance with the gain: past an initial boundary layer at the injection, 

the relevant solution of Eq. (i) must correspond, as far as p is sustained, to dE/dr 

= O, and it is given explicity by 

2 
7 = p/~rCW. (5) 

= The same relation may be rewritten as trmin t a to exhibit in a compact form the con- 

dition defining this ext~e non-thermal process: acceleration-limited radiation. 

The radiation still comprises two components: IC scattering is inevitable, given values 

of L~/R > 1032 ~ ; S emission takes place in the presence of a magnetic field, providing ~ 

the seed photons for the former under the condition in Eq. (4c), and contributing to 

the total output L in proportion to cB~R2/L.- Situations where energy gains balance 

radiative losses have been mentioned or alluded to in the past [32,34-37]. Eq. (5) 

singles out a reference condition, which is also an obvious first candidate for deve- 

loping in some detail outcomes and implications. In fact, we shall use Eq. (5) first 

in this Section to derive the general structure of the source and show that it indeed 

satisfies the constraints of Sect. IV. Secondly, as Eq. (5) fixes local values for 
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the electron y's depending on p(r) and w(r), we shall proceed in Sect. VII to derive 

spectral shapes from the essentials of source geometry. 

Let us note first that Eq. (5) may be read to mean that the electrons are re- 

accelerated and radiatively re-used a number of times given by tc/t r ~ tc/t a (which 

is of order 103 or more as seen in Sect. IV): this is the intuitive counterpart of 

the steady state requirement 

L = f p t (6) 
c 

2 = c 2 rewritten as L = f ~ m c tc/t a f y m tc/tr min upon use of Eq. (5). The inter- 

pretation renders intuitive a number of minimum properties associated with the extreme 

non-thermal process. The electron flux is a minimum when Eq. (5) holds; in fact, from 

the above 

fmin = (L/ymc2) (trmin/tc) (7) 

follows. The density is then also a mlnimum. Thus the original e.m° fields are mini- 

mally perturbed by charge and currents associated with the radiating electrons; the 

actual perturbation of the ambient magnetic field AB = efAR/R2c translates into 

AB/B = (L/cR2B 2) (trmin/tB) (v/c) (7a) 

where = ~ m c/e B may even approach t . The associated stress perturbation is 
r 

2 
nminYmC = (L/cR2B 2) (trmin/t c) (c/v) (B2/4~). (7b) 

Furthermore, the upper bound to the optical depth to scattering of photons is 

~Tnmin AR ~ (L/cR2B 2) (l/y2), (7c) 

and the upper bound to Faraday rotation reads 

~B ~ (L/cR2B2) (trmin/tB) (~B/~)2" (7d) 

We conclude that the source structure to be associated with the extreme non- 

thermal process described by Eq. (5) can meet the condition for preserving time varia- 

bility, spectrum, and polarization as produced by S emission, provided that L/c R2B 2 
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does not exceed unity by a wide margin. In fact, sources t~at derive their radiative 

power L from the conversion of the Poynting vector flux c R2B 2 associated with large- 

scale e.m. fields, satisfy the condition L/cR2B 2 ~ i. 

VI MAGNETOSPHERES OF COLLAPSING OBJECTS AS SCENARIOS FOR SOURCE ELECTRODYNAMICS 

We are led to focus attention on such sources also by direct observational hints: 

polarization suggests strong magnetic order, that is large-scale B field frozen into 

plasma bodies held by gravitational forces. An extended region of fast acceleration 

requires a one-step process rather than a stochastic one, one posibility being acce- 

leration by E fields which remain coherent on a scale comparable with B. Massive, 

rotating and magnetized objects generate around themselves coherent configurations 

of B and induced E fields, associated with a Poynting vector c B2/4~. 

For most of the considerations to follow, it is of little consequence whether 

the rotating plasma is self-gravitating with masses 106 to 108 M 8 as we [7,38] and 

others [39,8] have discussed under the names of spinars, massive rotators and magne- 

toids; or whether the plasma forms a lighter but still orderly rotating accretion 

disk on its slow way down to a massive BH [40-42]. In either case, the dynamics is 

basically similar in that the gradual loss of angular momentum associated with the 

energy output in radiation and particles drives a slow contraction of the plasma to- 

ward a more compact configuration with faster angular velocity ~ and a higher rota- 

tional energy. The main parameters of either proposed power source are: B ~ 102 to 

103 G, sustained over a distance of 1014 to 1016 cm, in a configuration rotating semi- 
-I 

coherently with ~ z 10 -4 to 10 -6 s The key feature to the electrodynamics is that 

in either case once the energy is transformed from gravitational to rotational, the 

power is carried out in the form of a large-scale electromagnetic stress flow genera- 

ted by the body's magnetic field, and is converted into relatively short wave-length 

e.m. radiation through the agency of relativistic particles; high thermodynamic quality 

strongly ordered in phase space is maintained throughout. The ratio ~ = L/c R2B2~. 1 

measures the efficiency of the electromagnetic links of this chain, and can be close 
2 2 

to the upper bound; while the ratio ~ = L/c R B± (strictly speaking, a function of r) 

measures the relative importance of IC and S contributions to the radiative output, 

and can exceed unity in conditions of good collimation of the electron pitch angles, 

B2/B 2 < i. 

At a subordinate level of consequence lie two more general features of the above 

scenario. First, the primary e.m. fields will have important gradients on their (lar- 

ge) scales. Second, the intrinsic scale-length of the source is likely to be given 

by the axial distance of the "speed of light surface", r a = c/~ = R c. Near and beyond 

Rc, the magnetosphere surrounding a magnetized rotator can no longer corotate at the 

angular velocity of the feet of the B lines rooted in the underlying body, nor can 
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it any longer maintain an energetically inactive configuration [43]: rather, various 

general considerations indicate that it is just near or beyond the speed of light sur- 

face that powerful processes of energy liberation, either in energetic particles or 

in radiation, take place [40,44]. Note that if acceleration of particles starts at 

any definite location, the effective accelerating field ~ - E must increase for a while, 

or at least must decrease more slowly than B(r). 

For quantitative aspects, the analysis of Goldreich and Julian [45] still pro- 

vides the basic pattern of the magnetosphere around a rotator carrying a dipolar 

aligned with ~; it covers also the region of dominant mass outflow around accretion 

disks with an analogous magnetization. For the sake of definiteness we shall refer 

mainly to the simpler case of spinar-like models where only outflow is present, and 

use the Goldreich and Julian results as a pattern for both the near, poloidal B and 
-i 

for the toroidal B ~ r gradually prevailing outwards of the speed of light surface. 

While the complete magnetospheric structure has not yet been established even in the 

simplest case of the pulsars, the many subsequent analyses have concurred in adding 

two main points of relevance here. First, the force-free (E • B = O) assumption is 

only a zeroth - order approximation: a small but very significant E • B component is 

allowed by various effects, including inertial forces, anomalous resistivity and even 

the radiative losses themselves [43,40,46]; it may be even required for stability [47, 

48]. Thus at least part of the open B lines actually close not far beyond Rc, in 

a zone which plays the role of the boundary region of Goldreich and Julian as for 

particle acceleration. Secondly, any component of the (multipolar) magnetic moments 

of the body perpendicular tO ~ should not change materially the general pattern, but 

add fluctuating components of the e.m. fields, the remmants - partly screened by plas- 

ma - of the long-wavelength radiated in vaduo by the oblique dipolar rotator [49,50]. 

The resulting shifts of field configuration and acceleration (obviously neither strictly 

nor persistently periodic) may be very relevant to the time variability of the radia- 

tive emission. 

VII SPECTRAL DISTRIBUTIONS 

While in the conventional SSC radiation the slopes of S and IC emissions are 

identical, this is not the case in the extreme S - IC process. Generally, a number 

of mechanisms tend to produce an S spectrum steeper than the IC produced by the same 

electrons. Correlations between energy and pitch angle may steepen the S spectr~ 

[38]; here we shall work out in some detail the effects of inhomogeneities contained 

explicity in Eq. (5). We parametrize the gradients in the e.m. fields, setting p = 

Po(R/r) a and B = Bo(R/r)m, in agreement with the coherent nature of the fields to be 

associated with a continuous acceleration framework. 

Before embarking on detailed computations, it is useful to point out a number of 
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results that can be easily surmised. We expect from the above a power-law spectral 

distribution; in fact, we expect different slopes for the S section and the IC sec- 

tion, since w(r) in Eq. (5) will correspondingly differ. Provided that the emitted 

frequencies increase with r, we also expect more power to be emitted at higher fre- 

quencies when the acceleration region is more extended; that is, flatter spectra and/ 

or enhanced IC emission. 

(a) DOMINANT SYNCHROTRON EMISSION 

Consider first the case when n << i; then in Eq. (5) the dominant energy density 

w is B~/4~, so that 

2 4~P/~TCB ~ (9) y= 

We deduce a distribution of electron energies: each shell corresponds to a dominant 

value of y that is N(y)dy = 4~r 2 n dr; from differentitating Eq. (9) with respect to 

r we find that the number of electrons per unit ~ interval is: 

N(~) = (2/12m-a I) (ftc/Y O) (y/yO)-s, (i0) 

Y° 2 2 where = 4~p /~TCBio and s = 1 - 2/(2m-a). 

The S emission from these electrons peaks at the frequencies 

= ~S(R/r ) a-m 5.1012B2y2 ; ~S - (3e/4~mC)Boy2 = (ii) 

(with B O = 102 B22G and >O = 102 >2 ) ' and the. spectral distributions resulting from 

F(v)d9 = f ~T c y wB(r)dr/v is: 

FS(9 ) = (i/Im-al) (Ls/~s) (~/~S)-~, (12) 

with ~ = (m-l)/(m-a) , 

and L s fPotconf = 9 l045 3 2 2 = . n5tdvB2Y 2 • 

Note that the frequency dependence in Eq. (12) follows also from the usual scheme FS(~) 

~ B (s+l)/29-(s-l)/2 using Eq. (i0) and taking into account the inhomogeneity of the w , 
- m  m - a  

field: B ~ r while ~ ~ r 
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2 
The spectrum falls exponentially for ~ > VB±Ymax" On the low side, it extends 

down to ~S ( and below as 1/3) if opacity to self-absorption or the cyclotron turn- 

over do not intervene; the conditions are: 

1/2 1 / 4 . 5 / 4 ,  
tdv ~ 0.4 (L45/~13) (~S/~)~/2 (~2 /v13 j (13) 

and ~ > ~B/~, respectively. 

Some IC radiation is also emitted at higher frequencies, when the electrons col- 

lide with the S photons. Its spectral shape depends on whether the dominant interaction 

is mainly with the locally produced S photons, or with the S photons produced at smal- 

ler values of r; this in turn depends on whether the S spectrum if flat or steep. In 

the former case we find, from F(v)d~ = f ~T c 2 Wph(r)dr/v with Wph(r)~r-2+(l-~) (m-a) 

2a-3m 2 
= ~C (R/r) ; ~C = ~SYO (14a) 

FC(~) = (Lc/9 C) (~/~C)-d, 

where L c = l(n-m)/(3m-2a)]Ls~ ; 6 = [l+~(m-a)]/(3m-2a) 

-2 2 
while in the latter case, with Wph(r) ~ r and ~ ~ 

(14b) 

V = ~c(R/r) a-2m (14c) 

= i/(2m-a) L C = I (n-m)/(2m-a) ILs ~ (14d) 

obtain. Note that the spectral shapes in Eqs. (14b) (14d) follow also from the general 

expression [51] 

FS(~ ) ~ -~ ~ j~M dyw[r(~)] 2~ N(%/) with ~M=(~/~S ) and %/m=(~/~ ) 
~m s 

~s > VS being the local S frequency given by Eq. (ii). The spectral index in Eq. (14d) 

obtains when the S spectrum is steep in the sense that ~ > i/(2m-a); this is the con- 

dition for the upper limit YM to dominate the integral, but then it just coincides 

with ~ > 6. It is satisfied as follo~s: for a > i, when m > a; for a < i, when m > 

[3+a + ((3+a) 2- 16a) i/2]/4, or for O < a < 1 when a/2 < m < [3+a - ((3+a) 2- 16a) i/2]/4. 

Beyond all the details, we stress the general point that the slopes of the S and of 
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the IC spectra, under the conditions specified by Eq. (9), are different, even though 

generated in common by one electron energy distribution: in particular, when S is 

steep, then IC is flat. 

This state of affairs is free of model dependence, given only the radial field 

variation. At a more model-dependent level, in terms of our scenarios, we would expect 

emission to begin near the speed of light surface and to extend into the zone where 

the B lines close. 

Initially, the poloidal components of B are then like r -3 to r -2 and B(r) if 

anything is even steeper; if E is a fraction of the induced electric field, it should 

scale like B(r)r, while 8 • E should be even flatter. Correspondingly, the condition 

> i/(2m-a) is amply satisfied and the S spectral index ranges between = 2 and = i, 
2 

while the IC one tends to values near or below 0.3. The local value of ~(r) ~ L(r)r x 

B-2(r)sin4~ tends to increase outwards up to the zone where B(r) ~ r -I holds; how- 

ever, in a strongly ordered geometry the IC emission is initially held down by the 

factor sin4~(~ = ~ initially) [52] to a small integrated power, and then it is bounded 

- when a > 1 - by the limited effective extent of the acceleration region. 

When instead a < 1 holds, ~,e general effect is to displace more emissive power 

towards higher frequencies. This is the case for the S emission itself, cf . Eq. (12); 

in addition, ~(r) eventually grows to reach values > 1 in a region where particle ac- 

celeration is still active: powerful IC emission is bound to ensue. 

(b) COUPLED S AND IC EMISSIONS 

Whenever ~ > 1 holds, y is determined (far from the Klein-Nishina limit AE/e = i) 

by the total photon density 

2 
~/ = P/OTCWph I> I/OTnAR (15) 

Several spectral components may be generated in this conditions; depending on the S 

slope and on the behaviour of Wph(r). 

By continuity with the condition expressed by Eqs. (14c) and (14d), consider the 

case where the seed photons are still provided by a steep S emission generated at some- 

> L s holds by definition, while the spectral features what smaller values of r. Now L c ~ 

are given by (~ = y~ w B (R)/Wph(R)) 

2-d 2 
= ~) (R/r) ~ = WS Yc c 

6 = i/(2-a) L c = fPotc/(2a+m) 

(16) 
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in the region (inevitably present, and energetically relevant where a ~i) where w ~ 
-2 

r ; the result holds under the condition ~ > i/(2-a) (i.e. m > 2 when a < I); note 

that when a~ 1 everywhere, ~ itself may be ~ 1 (ef. Eq. (12). Second-order scattering 

will be at least as important; it gives under the above assumptions a component with 

spectral features: 

= ~c2 (R/r) 2(2-~) ~c2 = ~c ~ 

62 = (3-~)/(4-2e). 

(17) 

For n > 1 the IC cascade proceeds in successive steps generating frequencies up to 
2 

the Klein-Nishina limit hv = ~ m c , unless the optical depth T± to the process ~ + 7 
+ 

= e + e- intervenes; note that very compact sources where o T N x r(Ae/e) >> 1 holds 

for X-rays, are in fact likely to interpose a large value of T± = O T N x r to photons 

produced below or even at the Klein-Nishina limit ~e/e~ i. 

VIII CONCLUSIONS 

TO sum up. The main observational features of the emission from Active Nuclei: 

high power with rapid variability and high polarization, can be made compatible if 

the emission mechanism is non-thermal radiation under continuous acceleration [52], 

making full use of the large optical depths to electron-photon interactions that the 

data themselves require. The theoretical condition is that the source should derive 

its power from Conversion of the Poynting vector's flux associated with large-scale, 

ordered e.m. fields. The related inhomogeneities produce S and IC spectra with dif- 

ferent slopes: steep S with flat, lowpower IC spectrum are generated in regions where 

the B(r) gradient is strong and the acceleration rate also falls rapidly; an S spec- 

trum declining less steeply and a flatter but powerful IC emission require a region 

of more extended acceleration. 

One general implication is independent of inhomogeneities: the lowest frequencies 

of the S emission obey ~S ~ Eo/Bo cf. Eqs. (ii) and (I0); self-absorption prevents 

a rise of the spectrum downward of 1012 Hz, cf. Eq. (13), the cutoff being higher for 

smaller objects, as in the case of NGC 4151; that the spectral peak occurs systemati- 

cally below 1015 Hz - that is, in the IR-O range -may be related to the existence of 

an upper bound for Eo/B^, as indeed may be expected in a quasi-neutral magnetosphere. 

In any case, if ~S z I0~3 - 1014 Hz, from Eq. (14) emission by IC should be expected 

at some level at 1016 - 1017 Hz in the X-ray range, and to extend into the UV for ~ ÷ i. 

More detailed implications are as follows. After the scenario of Sect. VI, the 

slopes agree quantitatively with the observed values. Note that for ~ + i, while the 

S slope flattens to ~ i, its range shrinks, and the IC-dominated emission tends to 



103 

take over at lower frequencies. 

The S radiation considered in Sect. VII (a) is highly linearly polarized at the 

emission: the defining condition ~ < 1 ensures a well defined magnetic configuration, 

cf. Eqs. (8a) and (8b); but, after the scenario of Sect. VI, n < 1 is correlated with 

a steep spectrum, generated within the region of stronger field near the speed of light 

surface. Therefore, a steeper spectrum should imply a higher polarization with a weak 

~-dependence of percentage and angle. From any rotating source, one expects sweeps 

in position angle which are large and relatively~-independent. This behavi0ur con- 

forms to that of BL Lacs. 

Variability in the S section should be sharper (on a time scale t v) for objects 

with a steep spectrum, as this correlates with an ordered magnetic structure; in any 

single such object, random flickering is likely to increase with increasing frequency, 

since at these correspondingly higher energies the balance between acceleration and 

radiation become increasingly rough (tr/t v increasing). Strict correlations between 

IC (x-rays) and S (IR-O) variations are not expected in the present framework; if any- 

thing, X-rays should follow in phase with somewhat longer timescale, but their varia- 

tions ought to be deeper and may appear as independent when ~ ~ i, owing to the non- 

linear and even self-amplifying character of the interaction (increased emission in- 

creases Wph and hence increases the IC emission still more). 

The R emission (compact cores) fits into the present framework as residual radia- 

tion from the electrons flowing (with t r + t v) from the main acceleration region out 

into a region of decreasing B(r); millimeter and centimeter wave-lengths are emitted 

at progressively greater radii. If the inner bound of these regions is controlled 

by self-absorbtion, a rather flat intrinsic spectrum is formed [54]; slower variability 

in radio than in the optical band results from this geometry, with some correlation 

as for long-term rates of change of activity. When ~ << l, the field in the rf region 

may still be stiff enough to channel a moderately relativistic flow: we make contact 

here with the detailed analysis made for the radio events [55-57]. 

The condition ~ < 1 and the spectral pattern given by Eqs. (12) and (15) should 

be primarily associated with Lacertids. Parameter values to be associates with the 

O-IR of BL Lac can be derived from Eqs. (ii), (12) and (13) or t v ~ R/c: By~ ~ 107 , 

nVB± ~ 1053 n ~ 107/B±. When the X-rays are directly observed, the parameters can be 

fully determined adding eq. (14a). While Mk 501 [27] is not an archetypical BL Lac 

source, it may represent a transitional phase characterized by a value of ~ not far 

from i; for this source >0 ~ 102 obtains. The IR apparently has a relative maximum 

at ~ = 1014 Hz, and the diameter could be less than a few 1014 cm; the field at R 

4 2 
becomes B = 1014G. In terms of direct observables, Lc/L s can be expressed as LS>o/CR c 
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(4~mc/e) 2 92 = i, in fair agreement with observed luminosities considering all the 
s 

uncertainties. 

The spectral pattern described in Section VII (b) should be associated with qua- 

sars: parameters derived from Eqs. (Ii), (12) and (16) to fit the data of 3C 273 (op- 

tical variability At ~ i0 days) are as follows: YO ~ 3 102, R ~ 1016 cm, B = 103G, 

n ~ 103 cm -3 , with Lc/L S ~ i. 

Note that in such a "large source, where the conversion of the Poynting vector 

flux into particle energy and radiation extends across a distance of r > 1016 cm, the 

inequality OT H r(Ae/e) > 1 progressively weakens at the locations and in the spectral 

range associated with hard X-ray emission. One then expects the IC cascade to pro- 

ceed to its Klein-Nishina limit Ae/e = 1 or hw = 7mc 2 ~ 102 MeV, with limited compe- 
+ 

tition from the X + X = e + e interaction, whose optical depth only approaches unity. 

Thus the X-ray emission of 3C 273 fits continuously into a unified scheme of outwards 

transport and deposition of ordered e.m. energy, generated by a collapsing, rotating 

and magnetized body. 

ACKNOWLEDGEMENTS 

The material here presented draws from a collaboration in progress with P. Morri- 

son [64]. Fig. 1 is due to B. Chao Chiu. Helpful and stimulating exchanges with M.J. 

Rees and M. Salavati are acknowledged. Work performed partly under CNR Grant 77.01540. 

63 115.9374, and partly under a grant from University of Rome, Presidenza Facolta Sci- 

enze. 

REFERENCES 

General Bibliography 

Blumenthal, G. and Tucker, W., in X-ray Astronomy, Giacconi and Gursky Eds., 
Reidel, Dordrecht (1974). 
Ginzburg, V.L., Theoretical Physics and Astrophysics, Pergamon Press, Oxford 
(1979). 
O'Connel, Ed., Study Week on Nuclei of Galaxies, Pontificia Academia Scientiarum 
Scripta Varia, 35, (1971). 
Ulfbeck, Ed., Quasars and Active Nuclei of Galaxies, Phys. Scripta 17, No 3, 
(1978). 

O'Connel, Ed., Stay Week on Nuclei of Galaxiesj Pontificia Academia Scientiarum 
Scripta Varia, 35, (1971). 
Weedman, D.W., Ann.Rev.Astron.Astrophys.j 15, 69 (1977). 
stein, W.A., O'Dell, S.L., Strittmatter, P.A., Ann.Rev.Astron.Astrophys., 14, 
173 (1976). 

Ulfbeck, Ed., Quasars and Active Nuclei of Galaxies, Phys. Scripta 17, No 3, 
(1978). 

Burbidge, G.R. and Burbidge, M., Quaei stellar Sources~ Freeman (San Francisco 
(1967). 
Aarons, J., Kulsrud, R.M. and Ostriker, J.P., A~.J., 198, 683 (1975). 
Morrison, P. and Cavaliere, A., in Pont. Acad. Sci. Scripta Varia, Nuclei of 
Galaxies, O'Connell ed., 35_, 485 (1971). 

Ozernoi, L.M. and Ginzburg, V.L.,Highlight8 Astron. ~, (19771 



105 

9 Rees, M.J., M.N.R.A.S., 184, 61P (1978). 
i0 Elvis, M., M.N.R.A.S., 177, 7p (1976). 
ii Mushotzky, R.F., Holt, S.S. and Serlemitsos, P.J-, Ap.J.(Letters), 225, LII5 

(1978). 
12 Lynden-Bell, D., Phys.Scripta, i_~7, 185 (1978). 
13 Visvanathan, N., Ap.J., 179, 1 (1973). 
14 Stockman, H.S. and Angel, J.R.P., Ap.J.(Letters), 220,L67 (1978). 

15 Swanenburg, B.N., Bennett, K., Bignami, G.F., Caraveo, P., Hersmen, W., Kanbach, 
G., Masnou , J.L., Mayer-Hasselwander, H.A., Paul, J.A., Sacco, B., Scarsi, L., 
Wills, R.D., Nature~ 27__55, 298 (1978). 

16 Lynden-Bell, D. and Rees, M.J., M.N.R.A.S., 152, 461 (1971). 
17 Fabian, A.C., Maccagni, D., Rees, M.J. and Stoeger, W.J., Naturej 269, 683 (1976). 
18 Meszaros, P. and Silk, J., Astron.Astrophys., 55, 289 (1977). 
19 Cavallo, G. and Reds, M.J., M.N.R.A.S., 183, 359 (1978). 
20 Lightman, A.P., Giacconi, R. and Tananbaum, H., Ap.J., 224, 375 (1978). 
21 Fabian, A.C. and Rees, M.J., to appear in IAU/Cospar Symposi~n X-ray Astronomy, 

Innsbruck (1978). 
22 Primini et al., Preprint (1979). 
23 Schnopper, H.W., Epstein, A., Delvaille, J.P., Tucker, W., Doxsey, R. and Jermigan, 

G., Ap.J.(Letters), 215, L7 (1977). 
24 Mushotzky, R.F., Serlemitsos, P.J., Bechker, R.H., Boldt, E.A. and Holt, S.S., 

Ap.J., 220, 790 (1978). 
25 Stein, W.A., Gillett, F.C. and Merrill, K.M., Ap.J., 187, 213 (1974). 
26 Ricketts, M.J., Cooke, B.A. and Pounds, K.A., Nature, 259, 546 (1976). 
27 Schwartz, D.A., Bradt, H.V., Doxsey, R.E., Griffiths, R.E., Gursky, H., Johnston, 

M.D. and Schwarz, J., Ap.J.(Letters), 224, LI03 (1978). 
28 Helmken, H., Delva~lle, J.P., Epstein, A., Geller, M.J., Schnopper, H.W. and 

Jernigan, J.G., Ap.J.(Letters), 221, L43 (1978). 
29 schnopper, H.W., Delvaille, J.P., Epstein, A., Cash, W., Charles, P., Bowyer, S., 

Hjellming, R.M. and Owen, R.M., Ap.J.(Letters), 222, L91 (1978). 
30 Penston, M.V., Penston, M.J., Neugebauer, G., Tritton, K.P., Becklin, E.E. and 

Visvanathan, N., M.N.R.A.S., 153, 29 (1971). 
31 Baity, W.A., Jones, T.W., Wheaton, Wm.A. and Peterson, L.E., Ap.J.(Letters), 199, 

L5 (1975). 
32 Blandford, R.D. and Rees, M.J., to appear in Prod. Pittsburg Conference on BL Lad 

Objects, (1978). 
33 Moore, R.L., Angel, J.R.P., Miller, H.R., Gimsey, B.Q., Williamon, R.M., Preprint, 

(1979). 
34 Cavaliere, A., Mem.S.A.It., 44, 571 (1974). 
35 Maraschi, N. and Treves, A., Ap.J.(L~tter8), 218, LII3 (1977). 
36 Burbidge, G.R., Phys.Sdripta, 17, 281 (1978). 
37 Pacini, F. and Salvati, M., Ap.J.(Letters), 225, L99 (1978). 
38 Cavaliere, A., Morrison, P. and Pacini, F., Ap.J.(Letters), 162, L133 (1970). 
39 Woltjer, L., in Pont.Adad.Sdi. Sdripta Varia '~udlei of Galaxies", o'Connell ed., 

35, 477 (1971). 
40 Blandford, R.D., M.N.R.A.S., 176, 465 (1976). 
41 Lovelace, R.V.E., NatTzr~, 262, 649 (1976). 
42 Ruffini, R., Ann. NY Adad.sdi., 262, 95 (1975). 
43 Manchester, R.N. and Taylor, J.H., Pulsars, Freeman (San Francisco), (1977). 

44 Holloway, N.J., M.N.R.A.S., 18__li, 9p (1977). 
45 Goldreich, P. and Julian, W.H., Ap.J., 157, 869 (1969). 
46 Coppi, B. and Pegoraro, F., to appear in Ann.Phys., (1978). 
47 Buckley, R., M.N.A.R.S., 183, 771 (1978). 
48 Cocke, W.J., Pacholczyk, A.G. and Hopf, F.A., Ap.J., 226, 26 (1978). 
49 Mestel, L., NatTxre Phys.Sdi., 233, 289 (1971). 
50 Mestel, L., Aetrophys.Space Sdi., 2_44, 289 (1973). 
51 Ginzburg, V.L., Theoretical Physic8 and Astrophysics, Pergamon Press, Oxford 

(1979). 
52 Woltjer, L., Ap.J., 146, 597 (1966). 
53 A direct analysis of the data for the outburst in spring 1978 of B21308+326 

(L O = 51047 erg s -1, t v ~ 1 d) by Moore et al. [33] concurs on this result. 



106 

54 O'Dell, S.L., Puschell, J.J., Stein, W.A., Owen, F., Porcas, R.W., Mufson, S., 
Moffett, T.J. and Ulrich, M.H., Ap.J., 224, 22 (1978). 

55 Jones, T.W., O'Dell, S.L. and Stein, W.A., Ap.J., 192, 261 (1974). 
56 Burbidge, G.R., Jones, T.W. and O'Dell, S.L., Ap.J., 193, 43 (1974). 
57 Ozernoi, L.M. and Ulanovskii, L.E., Sov.Astron., 18, 4 (1974). 
58 Wu, C.C. and Weedman, D.W., Ap.J., 223, 798 (1978). 
59 Schonfelder, V., Natul~, 274, 344 (1978). 
60 Ekers, R.D., Weiler, K.W.,van der Hulst, J.M., Astron.Astrophys., 38, 67 (1975) . 
61 Usher, P.P., Ap.J.(Letters), 198, L57 (1975). 
62 Oke, J.B. and Gunn, J.E., Ap.J.(Letters), 189, L5 (1974). 
63 Margon, G., Bowyer, S., Jones, T.W., Davidsen, A., Mason, K.O., Sanford, P.W., 

Ap.J., 207, 357 (1976). 
64 Cavaliere, A. and Morrison, D., in preparation (1979). 



SOME ASPECTS OF SUPERNOVA THEORY: 
IMPLOSION, EXPLOSION AND EXPANSION 

I. Lerche 

Department of Physics, University of Chicago 
Chicago, II. 60637, U.S.A. 

I INTRODUCTION 

At the 1967 Conference on Supernovae, held at the Goddard Institute for Space 

Studies [i] Thorne [2] remarked that "there seem to be two different kinds of super- 

novae under discussion: the kind astronomers see, and the kind theoreticians compute". 

He went on to comment, in respect of the theoretician's supernovae, that "we are per- 

haps premature in calling them supernovae until we know better their relationship to 

the astronomer's observations". 

The fundamental point being made by Thorne was that while theoretical calcula- 

tions largely guide the directions in which our interpretation of the observed super- 

novae phenomena proceed, they only guide - they do not compel. This point should be 

clearly borne in mind, for if theoretical calculations are discordant with observations 

(as has been known to happen occasionally) then it is, presumably, the calculations 

which have to be modified and not the observations (although, on occasion, it has 

happened that for a variety of reasons the observations were not completely free of 

error). 

In keeping with this philosophy this lecture on supernova theory is divided into 

three parts. 

The first deals with the current stage of our understanding of the conditions 

required for producing a supernova explosion, together with estimates of the resul- 

tant products: neutron star, neutrino flux, radiative flux, mechanical outburst, 

etc. - i.e., it is a theoretician's supernova. Presumably this part is most rele- 

vant to the general theme of this summer school on collapsed objects. 

The second part deals more directly with observations of SNRs and their inter- .. 

pretation in terms of blast wave theory. This part could be more accurately called 

an attempt to "marry" some gross aspects of the theoretician's supernovae to the bulk 

properties of observed supernovae - a template for success perhaps. It also serves 

(hopefully) to temper slightly some of the more exotic theoretical speculations that 

have occasionally bee~ advanced. 
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The third part deals with theoretical instabilities, notably the Rayleigh-Taylor 

and thermal instabilities. Relevant to this section are the observations of X-ray 

emission, and of optical filamentary "sheets" and fast moving "knots", in some SNRs 

(but see [3]). Here we are attempting to confront the 

retician's supernovae with observational facts for individual SNRs. The marriages of 

individual SNRs properties to theory are less stable than the marriage of the mean 

properties discussed in the second part of this lecture, and may yet lead to aliena- 

tion, if not outright divorce, of the theoretician's supernovae and the observatio- 

nal supernovae. 

II THE COLLAPSE OF MASSIVE STARS 

(a) ORDER-OF-MAGNITUDE ESTIMATES 

Supernovae must be associated with rather massive stars (typically M ~ 5-10 M 8 - 

the precise limit depending on the luminosity function assumed). 

The argument is simple: the brightest SNRs are typically 25 mag brighter at max- 
43 -i 

imum than the Sun - a luminosity L -~ i0 I0 L 8 i.e. ~4 x i0 erg s . The light curve 

typically has a half-width of a few weeks (~106 s). The optidal energy output is 

then ~4 x 1049 erg. If the supernova surface were at the same temperature as the Sun 

then since the luminosity would be proportional to (radius) 2, the radius of the super- 

nova at maxlmum would have to be 105 R 8 -~ 7 x 1015 cm. On the other hand, if the 

4 
supernova temperature were 3 x I0 K (5 T^) the optical output would be only about 5 

L®. (The UV output however would be 1052~erg.) The temperature inferred from the 

optical spectrum is 104 K. Hence the supernova radius, r, will be about 3 x 1015 cm. 

Since the supernova optical output peaks at about 106 s, the radial expansion speed 

of the ejected material is ~2 x 109 cm s -I (corresponding to 1-2 MeV nucleon-l). The 

, cm -2 optical Compton opacity, -i is equivalent to 5 g [4,5] so the mass involved is 

M ~ 4~pr3/3 = 4~r3/3Kr ~ IM® 

-i 
Thus, of the order of a solar mass is expanding at an energy of 1-2 MeV nucleon 

- a total mechanical energy budget of ~4 x 1051 erg - i00 times the optical output. 

Prior to the explosion, the star must have had the capability of generating ~2 MeV 

nucleon -I in a time of much less than 106 s. In the carbon-oxygen stage of nucleo- 

synthesis ~0.5 MeV nucleon -I can be released rapidly. Hydrogen and helium, which are 

capable of releasing much greater amounts of energy while synthesizing heavier ele- 

ments, have reaction rates far too slow to contribute significantly within the dyna- 

mical time scales set by the explosion. Thus the exploding star must be both massive 

and evolved. 
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(b) A PHYSICAL PICTURE FOR THE EXPLOSION OF A SUPERNOVA 

As a massive star evolves, the interior passes through successive stages of nuc- 

lear burning at increasing temperatures. Finally nuclear burning in the core of the 

star ceases with iron (binding energy ~i0 MeV nucleon-l). There is then no pressure 

gradient available to hold up the weight of material in the core [6]. Gravity squeezes 

the core until inverse E-decay reactions occur, converting electrons and protons into 

neutrons. Electron neutrinos and anti-neutrinos are then copiously produced, through 

reactions such as p+e ÷ n+~e, n+n + p+~e+e +n. The core then rapidly converts to an 

extremely dense state composed primarily of neutrons (the genesis of a neutron star, 

[7]). Bahcall and Wolf [8] have estimated the time scale of anti-neutrino production 

at 5 x 10 -7 s - much shorter than the collapse time of the core (of the order of milli- 

seconds) . The binding energy of neutron star material (mass density ~1016 g cm -3) is 

difficult to estimate owing to the complicated, and varied, equations of state that 

have been proposed for matter at nuclear densities. Estimates range from 50 MeV nuc- 

leon -I to 200 MeV nucleon -I [9]. Thus the neutrinos produced have about i00 times as 

much energy as is needed to power a supernova. The question is: how do the neutrinos 

couple to the matter overlying the neutron core of the star? 

It is important to recognize at this stage that the material overlying the core 

has had its pressure support removed so that it is infalling on to the core on a free- 

fall (hydrodynamic) time scale. It is also important to note that the overlying mat- 

erial is still in the nuclear burning stage, since the nuclear reactions have gone to 

completion only in the core. 

Two effects attempt to halt the infall of material on to the core. The first is 

enhanced nuclear burning because of adiabatic compression of the infalling material. 

The second is deposition of energy from the outflowing electron neutrinos. 

In the Original calculations of Colgate and White [i0] no neutrino heating was 

allowed for. Contrary to what might have been expected, the detonation of carbon and 

oxygen (caused by both the adiabatic compression and by a weak reflected shock from 

the postulated neutron core) did not lead to a supernova. The detonated material con- 

tinued falling into the neutron core. The reason, in retrospect, is known to be the 

absence of an underlying pressure support for the burning material. The inner boun- 

dary of the burnt C and 0 sees only a reducsd pressure caused by the imploding iron. 

Without an increased pressure support, the detonated C and O continue to fall towards 

the neutron core and, in turn, converts from normal matter to neutron matter. 

Thus the neutrinos are an absolutely essential ingredient in the generation of 

a supernova. 

As Arnett [ii-14], Colgate and White [i0], and Schwartz [15] have pointed out, 
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the neutrinos and anti-neutrinos from the hot central regions can deposit sufficient 

energy in the overlying material to explode these outer layers and so produce super- 

The following simple argument illustrates the main points. 

The incoherent electron-neutrino scattering cross-section is [8] about 

O = (2/3) 10-44 (Ee/meC2) (E /me c2) cm 2 

where E (E e) is the neutrino (electron) energy provided E >> E e >> me c2" (This re- 

sult agrees with more detailed c a l c u l a t i o n s  [ 1 6 ]  w h i c h  u s e  a n  e l e c t r o n  d i s t r i b u t i o n  

considered more appropriate for the collapsing star). Numerical computations indicate 

a core radius R ~ 107 cm [17]. 
c 

To estimate the electron number density near the core, a minimum estimate is pro- 

vided [14] by considering the Fermi level at which electrons would be captured by the 

most refractory element (He). This extreme case yields n = 6 x 1034 
-3 

cm The mean- 
e 

for electron-neutrino scattering is then Imfp ~ i/nee z 3 x 105 cm for E~ free-path 

i00 MeV, E ~ i00 MeV. 
e 

Thus R c ~ ~mfp" The neutrinos provide a pressure support for the core. Bahcall 

[18] and Arnett [ii] estimate that a neutrino loses roughly 50% of its energy per scat- 

ter. 

If we follow a neutrino on its passage through the material overlying the core, 

although the cross-section decreases as the neutrino energy degrades, a neutrino still 

scatters many times. Detailed numerical calculations show that the neutrinos therma- 

lize and escape from the star with energies of i-i0 MeV. The time scale for neutrino 

escape to the point where it scatters no more is ~10 -3 s - i.e. only over a distance 

of about 107 cm does significant neutrino scattering occur near the core. Alterna- 

tively, the neutrino dumps 90-98% of its energy into electrons within about one ini- 

tial core radius. Thedeposited energy produces several important effects. As the 

electrons heat up, the cross-section for electron-neutrino scattering increases. This 

tends to inhibit the escape of neutrinos even more. Because Of the very short electron- 

nucleon collision time the nucleons also heat up, providing a significant thermal pres- 

sure. Not only that but the temperature can easily reach the detonation point for C, 

O, etc., whose burning rates are very sensitive functions of temperature [18-23] . 

On a hydrodynamic time scale, neutrino energy deposition and explosive element 

burning are, effectively, instantaneous. Numerical calculations indicate that the 

combined energy input can be sufficient to heat up the overlyinglayers of material 



111 

enough that they overcome the gravitational binding energy, provided the total stel- 

lar mass is not %00 large (8-12 M G is a rough estimate of the current limit thought 

to obtain - although the limit is still very sensitive to the numerical codes - but 

more on this anon). An explosion results with a shock wave riding out from the core 

(Figure 1)[25,26]. 

10 9 

STELLAR ENVELOPE 
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r r  
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Fig. i. The radius versus time of mass points in a star whose iron core is imploding. 
Each line is the trajectory of a unique fluid element in the star. Only the 
inner 1.68 M G of a 12 MQ star is considered; it comprises a 1.49 M 8 iron core 
(R < 108 cm) and envelope. The neutron star itself is formed at ~0.84 s. At 
this time the collapse is halted and an outward going shock wave is formed. 
The combined force of the shock wave and the radiation force of the emitted 
neutrinos is sufficient to blow off the envelope. (Figure from [ 24] ). 
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If the core mass is large enough (3-5 M@?), numerical calculations indicate that 

even the energy deposition by neutrinos (combined with explosive element burning) may 

not be sufficient to overcome the gravitational binding. The collapse continues. The 

core cannot then radiate the energy supplied by the gravitational infall. It heats 

up. Eventually the core temperature will rise to the point where muons are formed. 

These will decay, producing muon neutrinos which do not interact at all with the over- 

lying, infalling, material. The core temperature then holds steady at about 200 MeV. 

The mass in the core keeps on increasing and eventually reaches a point where 2 GM = 
c 

c2R - black-hole-formation scenario, perhaps. 
core 

Arnett [13,14] has remarked that "the quantitative value for the maximum mass 

which can explode is uncertain because of the many crude assumptions needed to make 

the problem tractable" (see also [19]). 

While the above qualitative picture is relatively simple, and (hopefully) por- 

trays the essential physics at play in the theoretician's supernova, quantitative 

modelling presents considerable difficulties, not the least of which are the accura- 

cies of the numerical codes - even assuming that the detailed physics has been incor- 

porated satisfactorily. It is not our intention here to enter into a discussion of 

the numerical accuracy required. Suffice it to say that, at the least, the coupled 

evolutionary equations for neutrino transport, radiative transport, hydrodynamical 

motion and element burning have to be considered. Details can be found, for example 

in [25-29 ] . 

At the present stage of development it is fair to ask what assumptions go into 

the numerical calculations, what "free" parameters are available to influence the 

final products of core collapse, etc. 

Buchler [30] has pointed out that basically "the models are isothermal, spheri- 

cally syranetric, ignore the effects of rotation and magnetic fields [ 31] and are con- 

structed to be initially in hydrostatic equilibrium". He goes on to note that the 

"evolution of the core is followed by a standard hydrodynamic code which includes an 

equation of state for an arbitrarily degenerate and relativistic electron gas, per- 

fect ion gas and radiation". Since an exceed£ngly large amount of computer time is 

needed to correctly follow the evolution of a star possessing H, He, C, Ne, O and Si- 

burning shells, and since one would have to ass~e some a priori "mix" - both in re- 

spect of spatial distribution and fractional elemental composition of the star'- it 

is most often the case that the core regions of a collapsing star are taken to be 

pure carbon. The codes, by and large, do not include effects of general relativity. 

Thus within the currently available codes: (i) the mass of the collapsing core 
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and its constitution are free parameters; (ii) the mass of overlying material and its 

constitution are adjustable; (iii) the equation of state of the overlying material is 

adjustable. 

There is clearly a long way to go before all of the details are sorted out. The 

calculations, even in simple cases, are difficult, depend on a complicated hierarchy 

of phenomena, and consume computer time at alarming rates [ 20,25,26]. 

Over a decade after the original calculations of Colgate and White [10] there 

is still a major concern [19] that the neutrino transport mechanism may not be effi- 

cient enough to explain the implied energies of supernovae. 

Currently, the implications of Weinberg-Salam SU(2) x U(1) neutrino theory [32] 

are being incorporated in the interaction physics for neutrino transport in collaps- 

ing stellar cores. The so-called "coherent" cross section for neutrino scattering 

was recognized by Freedman [33] and others as being of considerable importance in the 

problem of supernova detonation. 

The effect is that in large nuclei the cross-section per nucleon for neutrino 

scattering and absorption ~ne~8~8 proportional to the atomic weight. If the confi- 

guration at the start of the implosion consists mainly of heavy nuclei there is a dis- 

proportionately larger scattering cross-section on the heavy elements that have not 

yet imploded. This makes the neutrino energy deposition larger , increasing the effi- 

ciency of the neutrinos as an effective mechanism for causing the explosive detona- 

tion of massive stars. 

The "coherent cross-section" effect promises to have a profound bearing on our 

understanding of the detonation physics of supernovae. The details arestill under 

intensive numerical investigation. 

From the point of view of this summer school's main theme we are still awaiting 

answers to two outstanding questions: (i) Can a neutron star core manage to eject 

sufficient mass to prevent its own mass from accumulating to the point where it, too, 

collapses (presumably into a black hole)? If so, over what range of star masses does 

this occur, etc.? (ii) Even if a neutron star core can protect its own existence, 

how is it possible for it to acquire the requisite spin and magnetic field to become 

a pulsar? Must we look elsewhere than to supernovae for the origin of the majority 

of pulsars (the Crab and Vela pulsars excepted at this time)? 



114 

III THEORETICAL HYDRODYNAMIC EVOLUTION OF SNRs 

(a) DYNAMICAL EVOLUTION 

The division of the dynamical evolution of an SNR into several distinct phases, 

as suggested by Woltjer [4,34] has been adopted in most subsequent investigations. 

Briefly, Phase I refers to the free expansion phase and merges into the "adiabatic 

expansion" of Phase II when the total mass swept up from the interstellar medium by 

the expanding shock front exceeds the initial mass ejected by the explosion (after 

perhpas several hundred years). If the initial energy injected into the SNRwas im- 

pulsive, then, provided the energy escaping by radiation is significantly less than 

the impulsive energy input, only two quantities are available for determining the 

Phase II diameter of an SNR: the total explosive energy E and the interstellar gas 

density p, assumed constant in the local neighbourhood of an SNR. On dim~nsionG1 

grou~8 alone, the shock diameter D is then given by 

D(t) = (~E/p)i/5t2/5. 

Here ~ is a number of order unity whose value depends on the equation of state of the 

fluid [35,36]. Phase II expansion is often referred to as the adiabatic Sedov phase, 

since Sedov [ 36] derived the general analytical solution to the fluid flow equations 

for an adiabatic gas under self-similar flow conditions. But it should be noted that 

shock diameter versus time relation does not depend for its structural form on the 

details of the fluid flow [37]. 

The Phase II stage of an SNR is often thought to last for a goodly portion of 

its lifetime (perhaps 105 yr). Phase III ("isothermal" expansion) takes over when 

radiative cooling losses are significant, typically when the velocity has dropped be- 

low several hundred kilimetres per second. A dense shell of gas is expected to form 

driven from behind by hot gas; Woltjer [ 4] and others have argued that each element 

of the dense shell can be considered as moving with constant momentum, so that D~t ~. 

As discussed by Clark and Caswell [38], (hereafter referred to as CC) the radio 

observations suggest that nearly all observed SNRs are still in Phase II. Accordingly 

the only models considered in this section of the paper will be those which are self- 

similar at different stages of their expansion. 

(b) A GENERALIZED APPROACH TO THE RADIO EVOLUTION 

In the radio domain SNRS are among the brightest discrete sources in our galaxy. 

While the radio luminosity .(~1033 to 1035 erg s -1) is, of course, minute compared 

to the optical outburst (~4 x 1049 erg s -1) the radio emission is important for two 

main reasons: (i) observationally the optical outburst typically lasts only of the 
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order of weeks while the radio emission lasts for tens of thousands of years. Thus 

radio observations can easily be made of many SNRs. (ii) The radio emission, caused 

by the synchrotron process, implies the existence of a large reservoir of energy in 

relativistic electrons and magnetic field. No universally accepted theory has yet 

been proposed for the origin of this energy reservoir and, given the diverse proper- 

ties exhibited by individual SNRs - in particular the young SNRs such as Cas A, Tycho 

and the Crab nebula - it may be that no single theory will do the job. 

In fact it is fair to say that theoretical work on the radio emission from SNRs 

has not developed much since the pioneering work of Shklovsky [39] and van der Laan 

[40]. Recent work has concentrated chiefly on assessing whether specific mechanisms 

could be operating within individual SNRs [41-48]. However, there now exist good 

observational statistics on more than 100 SNRs (see CC). We have therefore investi- 

gated a broad range of models in order to select those which can account for the ob- 

servational statistics of large numbers of sources and which therefore warrant detailed 

subsequent examination. The observational statistics are for bright, "middle-aged" 

shell SNRs. Our investigation argues in favour of the compressed interstellar field 

as the principal source of magnetic field in these remnants. Elsewhere we have rea- 

ched a similar conclusion for much older remnants using entirely different considera- 

tions [49]. 

(i) The Observational Results 

Our observational material is the recent SNR compilation of CC: 

dating the catalogue are given in Caswell and Lerche [49]. 

revisions up- 

We first quote the empirical relationships summarized in Section 7 of CC as re- 

vised by Caswell and Lerche: 

= 10-15D-3exp(-IZl/175), (i) 

D = 0.93t2/5exp(IZl/900), (2) 

N(<D) = 6 x 10-3D 5/2, (3) 

N(>Z) = 1.9 x 10-15Z -5/6, (4) 

= 1.25 x 10-15t-6/5exp(-IZl/ll0), (5) 

where Z is the mean surface brightness at 408 MHz (W m -2 Hz -I sr-l), D is the dia- 

meter (pc), z is the galactic height (pc), t is the age (yr) and N(<D) and N(>Z) are 

the integral number counts of sources with diameter <D and surface brightness >Z res- 
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pectively. The equations are not independent but the above relationships are an in- 

ternally consistent set. 

All of the relationships are believed applicable at least to the completeness 

10-20 m-2 -I limit of the sample, Z408 > 1.2 x W Hz -I sr 

For subsequent comparison with theoretical work we will be principally concerned 

with equations (2) and (4). Equation (4) is a directly observable relationship inde- 

pendent of distance estimates: equation (2) is obtained from applying equation (i) 

to the data set used in deriving equation (4). This obs~r'v~d dependence of D on t 

corresponds, in fact, to the self-similar solution to the shock-front radius of an 

explosion impulsively releasing energy (but negligible mass) into a uniform medium 

(see Section III (a)). 

AS discussed in [49], equations (i) to (5) have been derived for shell SNRs (i.e. 

excluding remnants of a type resembling the Crab nebula). Our subsequent conclusions 

are thus rigorously applicable only to the shell sources. 

(ii) 

is 

Radio Emission 

The radio flux density at frequency ~ from an optically thin synchrotron source 

S = klKB(I+y)/2 ~-(Y-1)/2V~-2 . (6) 

Here k I is a constant which depends on the spatial distribution of both the electrons 

and magnetic field throughout the emitting volume V, Z is the distance to the source, 

B is the magnetic field and ~ defines the energy distribution of the emitting rela- 

tivistic electrons, whose number density is taken to vary as 

dn(E) = KE-YdE • (7) 

Note that if S ~ ~-@, then y = 1 + 2@. 

For a model of an SNR in which the dependence of K, B and V (and perhaps ~) on 

D is glven, the corresponding dependence of S (or the mean surface brightness, ~ 

4S~2/~D 2) on D (and hence indirectly on time) can be predicted. 

We designate models according to the origin of the relativistic electrons and 

magnetic fields responsible for the radio emission. We have three reasonable alter- 

natives: 

(i) particles and field originate within the ejected material [ 39]; 
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(ii) both field and particles originate in the compressed interstellar medium [40]; 

(iii) the field is interstellar but the particles are from the ejecta [40]. 

Shklovsky's original (1960) model illustrates how specific evolutionary changes 

are predicted. These can then be compared with the observations. Shklovsky postu- 

lated that: 

(a) the magnetic flux is conserved throughout the volume of the SNR ( or through- 
-2 

out a shell with thickness ~R = D), so that B ~ D ; 

(b) the relativistic electrons trapped in the nebula lose energy predominantly by 

adiabatic cooling on account of the expansion. The energy of a single elec- 

-i 
tron then decays as E ~ D [39]; 

(c) the emitting volume is proportional to the volume of the SNR (this allows for 

shell emission if the shell thickness is proportional to the diameter); 

(d) the total number of relativistic electrons is conserved throughout a volume 

proportional to the whole volume of the SNR. 

Assumptions (b) and (d) imply K ~ D -(2+Y) and hence from (6), S ~ D -2~, or in 

terms of the surface brightness, 

~ D-2(I+Y ) , 

and, in terms of the radio spectral index a ~ ½ (X-I), 

~ D -4(I+~) . (8) 

Unfortunately, equation (8) does not fit the observations very well; in particular, 

for ~ = 0.5 it predicts ~ ~ D -6, in disagreement with the observational result ~ ~ D -3 

Essentially Shklovsky's postulated decay of magnetic field and particle energy is fas- 

ter than observed and at least one of these must decay at a slower rate. Accordingly, 

over the years, as Shklovsky [ 50] has succinctly remarked, "various attempts have been 

made to 'touch-up' the theory but they are all palliative in character .... ". 

It seems to us more appropriate to systematically investigate the effects of 

relaxing, or abandoning, each of Shklovsky's (1960) assumptions, for it is changes in 

these basic assumptions which gives rise to differing theoretical models for the radio 

emission. 

(iii) General Models 

In order to encompass as many as possible of the detailed models worked out over 

the years following Shklovsky's (1960) original proposal, we proceed as follows: 

(a) Let the magnetic field vary as D-a; a = 2 corresponds to flux conservation through 
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out the volume, a = 3/2 corresponds to magnetic energy conservation throughout the 

volume, a = 1 corresponds to magnetic flux conservation in a shell of oonst~rn% thick- 

ness, a = 0 corresponds to a constant magnetic field. 

(b) Let the energy of a single electron vary as D-b; b = 1 corresponds to energy loss 

due to adiabatic cooling [ 39], and b < 0 corresponds to a particle's energy increa- 

sing as the SNR expands - presumably representing repowering of the relativistic elec- 

trons either by a central source or by their draining the energy budget available in 

some other component of the SNR (e.g. magnetic field, bulk motion, kinetic energy of 

protons, etc.). 

(c) Let the emitting volume Vemit vary as DC; c = 2 corresponds to emission from a 

shell of constant thickness AR and c = 3 corresponds either to emission from the whole 

volume ~f the SNR or to emission from a shell whose thickness ~R is ~D. 

(d) Let the total number of particles be conserved in a volume, Vcons , which varies 

as Dd; d = 3 corresponds to particle conservation either throughout the volume or in 

a shell whose thickness AR is ~D; d = 2 corresponds to particle number conservation 

in a shell of oons~n~ thickness. 

(e) Let the expansion be described by 

D = t £ (9) 

We shall return later to "favoured" values for the parameters a, b, c, d, E, 

but first consider the expected general evolutionary behaviour. 

We will be particularly concerned with the predicted Z-D or Z-R relation (which 

has commonly been used inthe past as a discriminant between competing theories) and 

with the N(~)-~ relationship for comparisons with the current observational data. 

From equation (6), the above assumptions imply that the radio flux density, S , 

is given by 

S ~ KB(I+y)/2D c, 

with K = R -d-b(Y-l) . 

Thus S ~ D n 

with n = c-d-b(y-l)-a(l+y)/2. 

We characterize models by the parameter A, which defines the evolution of surface 

brightness Z with time t according to Z = t A. 
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Since Z = SD -2 , 

and since S = D n and t ~ D I/C , 

we have Z = D n-2 ~ t A = D A/e (i0) 

Equation (i0) gives the predicted Z-D (or Z-R) relation Where A = e(n-2) = e(c- 

d-2-b(~-l) - a(l+>)/2). 

For a given rate of supernova outbursts, the number of SNRs whose radio surface 

brightness exceeds Z will be proportional to the time taken for the surface brigh- 

tness to drop to the value Z, so that 

N(>~) ~ t ~ ~I/A. (ii) 

It also follows from (i0) that 

dEnZ/d£nt = A, (12) 

or, in terms of the flux density S, 

d~nS/d~nt = A+2~ . (13) 

We consider several cases of energy balance: 

(i) If local equipartition of energy is maintained between the relativistic elec- 

trons and the magnetic field so that, as the SNR expands, 

B2/8~ ~ K[E2E-(~-I)dE, 

JE 1 

then 2a = d + b. (14) 

(ii) On the other hand, if local equipartition of energy is maintained between the 

magnetic field and the bulk motion of the SNR so that 

B2/8~ = ~p(dR/dt) 
2 

then, with p = constant (as will be the case for compression of the local interstel- 

lar medium by a constant factor) we have 

a = (i-~)/£. (15) 
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(iii) Maintenance of equipartition of energybetween the relativistic electrons and 

the bulk motion of the SNR would similarly imply 

d + b = 2(I-E)/E. (16) 

Equipartition of magnetic field energy density, relativistic particle energy density 

and bulk motion energy density would then be in force when 2a = d + b = 2(l-e)/e. 

(iv) Specific Models - A T~ble of Theoretical Values 

t A In Table 1 we present values of the parameter -A in the relation ~ ~ for values 

o~ a (the magnetic field parameter) and b (the behaviour of a single relativistic 

electron's energy as an SNR expands) which more than encompass the range of possibi- 

lities that have previously been suggested as relevant for SNRs. The table is essen- 

tially self-explanatory. For each value of a we give a columnar table of b values. 

Emission from a volume of constant shell thickness ~R is represented by c = 2 

while c = 3 represents emission either from the whole volume of the SNR or from a shell 

with thickness AR ~ D. Similarly d = 2 represents conservation of the total number 

of relativistic electrons in a shell of constant thickness, while d = 3 represents 

electron number conservation either in the whole volume of the SNR or in a shell whose 

thickness is ~D. 

Provided that c = d, the predicted value of A is the same for emission from a 

shell either of constant thickness or with thickness ~D. But the prediction assum- 

ing conservation of electrons in a shell of constant thickness (i.e. d = 2) can only 

be valid as long as such a shell wholly includes the emitting region - a situation 

likely to be of rather limited duration unless c = 2 also. We have thus omitted from 

Table 1 cases with c ~ d. 

However, we retain the full designation of models in the following discussion, 

using the labelling (a,b; c,d). 

For cases where there is energy equipartition between the local magnetic field 

energy density and the relativistic electron energy density a small e appears in Table 

I. The values of c and d needed for equipartition (see eqn. 14) are given alongside 

e. Thus, for example, the (2,1; 3,3) model represents equipartition while (2,1; 2,2) 

does not. The value of -A for ~ = 2 is given in the lower right-hand corner of each 

box both to show a representative value of -A and for later comparison with the obser- 

vational data on SNRs. From the table the basic assumptions of different models are 

readily seen. For example, Shklovsky's (1960) model [39] is classified under (2,1; 

R -2, R -1, R 3 ~ R 3) while his later model (1976), 3,3) (i.e. B = E ~ Vemit ~ , Vcons 
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TABLE i: PREDICTIONS OF THEORETICAL MODELS TO ACCOUNT FOR SNR RADIO EMISSION. 

VALUES OF -A = E[d+2-c+b(7-1)+½a(y+l) ] ARE TABULATED, WITH THE 

CONDITIONS E = 2/5 and c = d. 

-i 

(E ~ R) 

0 

(E const.) 

+i 

(E ~ R -1) 

+2 

(E ~ R -2) 

0 

(B CONSTANT) 

2 
~ (3-7) 

0.4 

4 
g 

0.8 

2 g (Y +i) 

Notes 2,4 "1.2 

4 
gY 

1.6 

1 
2 

(B ~ R -I/2) 

e when c=2=d 

1 
i0 (13-37) 

0.7 

1 
i0 (9+7) 

*i.i 

1 y (l+y) 

1.5 

1 
i 0  (1+97) 

1,9 

1 

(B = R -1) 

e when c=3=d 

1 
(7-7) 

*i.0 

e when c=2=d 

1 
l+ g 7 

"1.4 

3 g (l+y) 

Note 3 1.8 

1 
7+ g 

2.2 

3 
2 

(B = R -3/2) 

l •  (15-y) 
"1.3 

e when c=3=d 

1 
y~ (ll+3y) 

Notes 5,6 1.7 

e when c=2=d 

7 
lO (l+Y) 

1 
i0 (3+117) 

2.1 

2.5 

2 

(B ~ R -2) 

8 
g 

1.6 

2 
(3+7) 

2.0 

e when c=d=3 

4 
( l + y )  

No te  1 2 . 4  

e when c=2=d 

2 
(1+37) 

2.8 

4a 

NOTES TO TABLE 1 

(2,1; 3,3) is Shklovsky's (1960) "canonical', model with equipartition between 
magnetic field energy density and relativistic particle energy density. It has 
B = R-2, E ~ R -1, Vemit ~ R 3, Vcons ~ R3: thus S ~ R -27. 

(0,i; 3,3) is the model by Poveda and Woltjer [51] which uses relativistic elec- 
trons from the supernova and the compressed interstellar magnetic field to gene- 
rate the synchrotron emission. The model has Vemit ~ R 3, Vcons ~ R 3, E ~ R -I 
and B = constant: thus S ~ R-(Y-I). When Woltjer [4] reconsidered this model, 
the available experimental data suggested Z ~ D -4, compared with this model's 
prediction of Z ~ D-3; current experimental data are now in agreement with this 
model's prediction. 

(i,i; 2,2) is the constant-thickness shell model proposed by Kesteven [52] with 
Vemit ~ R 2, Vcons ~ R 2, E ~ R -I and flux conservation within the shell, i.e. 
B ~ R -I. Hence we have S ~ R-½(37 -I) . Kesteven also quotes a result for his 
interpretation of van der Laan's [40] model; we discuss this in Note (4), since 
van der Laan's model has several possible interpretations. 

van der Laan's [40] model is an outline of how the synchrotron emission might be 
generated, using as the magnetic field the compressed field of the interstellar 
medium. In this respect it resembles the later model of Poveda and Woltjer [ 51], 
but instead of specifying the time dependence, or evolution, van der Lann sug- 
gests other constraints which do not necessarily define a unique evolution. Thus 
equipartition between the relativistic particle energy and the magnetic energy 
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4b 

density is postulated, and these in turn are related to the kinetic energy of 
expansion and the factor by which the medium is compressed. According to van 
der Laan's equation (4), the relative shell thickness, AR/R, is increasing with 
time (and radius), which increases the emitting volume but reduces the compres- 
sion (and field enhancement) factor. In contrast, Poveda and Woltjer suggested 
that over a long period the compression factor might be expected to be approxi- 
mately constant (~4). Kesteven [52] concluded that van der Laan's model would 
show the dependence S = R-3~; it is not clear to us what assumptions Kesteven 
has made in reaching this conclusion, and we suggest that a variety of interpre- 
tations are possible. 

van der Laan also proposed a model which relies entirely on the enhancement of 
emission from the interstellar medium as it is compressed. As noted by van der 
Laan, the expected radio flux density is negligible early in the life of the 
SNR and increases with age. This model was envisaged by van der Laan as accoun- 
ting only for old SNRs. While not readily incorporated in our scheme, the clo- 
sest comparison is probably (0,0; 3,0) - i.e. B ~ R 0 and Vemit ~ R 3 (if the 
compression factor is not changing greatly); E ~ R 0 and Vcons ~ R 0. For periods 
when the compression factor is not changing significantly, S ~ R3. " 

(3/2,0; 3,3) is suggested by Shklovsky [50] as being an interpretation of Gull's 
[46] model. Equipartition between field energy density and particle energy den- 
sity occur; the magnetic energy is conserved by turbulent regeneration, and re- 
powering of individual electron energies occurs at a rate balancing adiabatic 
losses. Thus we have B = R -3/2, E = R 0, Vemit ~ R 3, Vcons = R 3 and S ~ R -3(I+>)/4. 
It is not clear that the relevant volumes will necessarily be ~R 3, but this has 
been assumed. Both Gull and Shklovsky suggest that the model satisfactorily 
accounts for the secular flux density decay of Cas A and this is discussed fur- 
ther in Section IV (b). 

Insofar as Willis [53] proposes energy e~uipartition between the magnetic field 
and particles and concludes that B ~ R -3/2, his model, like Shklovsky's model 
[50], corresponds to (3/2,0; 3,3). Of the three relationships ~ ~ D -8, B ~ D ~x 
and B = Z y, only one is needed to define the other two if equipartition is assu- 
med. For then we have x = 2(1+8)/7 and y = 2(1+8)/78. Willis uses separate 
observations to conclude that ~ ~ D -4 and B ~ ~0.37, so that B ~ D -3/2 (approxi- 

mately). In fact for the equipartition situation, the dependence of B on Z does 
not vary much for different Z-D or B-D relationships. If B ~ D -3/2 precisely, 
then ~ ~ D -4"25 exactly [50], and B ~ Z0.35 uniquely. 
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devised specifically for Cas A, is (3/2,0; 3,3) (i.e. B ~ D -3"2, / E ~ DO); thus we see 

that Shklovsky has replaced magnetic flux conservation with magnetic energy conser- 

vation and has introduced relativistic particle energy replenishment at a rate suffi- 

cient to balance adiabatic losses. It is also to be noted that a small e appears in 

both boxes (2,1; 3,3) and (3/2,0; 3,3) so that local equipartition of energy density 

between relativistic electrons and magnetic field is maintained in both his models. 

The notes appended to Table 1 reference previous discussion of some of the models, 

together with short comments where appropriate. 

The entries in Table 1 with an asterisk are of interest in connection with the 

observational N(~) v. ~ curve and the ~ v. R relation. 

(v) Comparison of Theoretical Models with Observation 

The observed relationship, equation (4), relates to a sample of SNRs complete 

to a limiting surface brightness. However, it is readily shown [49] that the same 

exponent (-5/6) would be obtained for a sample complete to a given age, which is the 

relevant quantity in our theoretical models. We see that A = -1.2, the observational 

uncertainty being ~20% (Section 5 of CC). We therefore confine our attention to the 

range 1.4 > -A > 1.0, with A = -1.2 as the most probable estimate. Likewise, com- 

parison of equation (2) with equation (9) shows e z 2/5. We emphasize that the adop- 

tion of this value is on observational grounds and not merely because it corresponds 

to the value expected for an adiabatic phase. 

The specral index distribution derived by CC has a mean of 0.45, with individual 

values showing a standard deviation of 0.15. The corresponding value of > is 1.90; 

the distribution of y has a standard deviation of 0.3 but the uncertainty in the mean 

value is of course much smaller, ~0.04. 

(vi) Theoretical Models which Fit the Observed Value of A 

Five combinations in Table 1 (those asterisked) predict A values in the range 

1.4 > -A > i. Those cases with (a,b; 3,3) seem particularly relevant because the 

emission arises from a constant fraction of the total volume, as seems to be generally 

observed (Willis [59] shows that typically the shell thickness of an SNR is proportio- 

nal to its diameter). We first summarize comments on those combinations which are com- 

patible with the data. 

-i 
(0,i; 3,3) The magnetic field is constant and a particle's energy decays as R 

Such a situation could describe emission from the swept-up shell - utilizing the 

compressed interstellar magnetic field with relativistic electrons originating 

from the supernova (provided the electrons are able to flow into the region in 

quantities large compared with the original cosmic ray electrons of the compressed 
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interstellar medium) . Note that if ~ = 1.90, then -A = 1.16~ 

(½,0; 3,3) and (1,0; 3,3) In both models the magnetic field slowly decays (as R -½ 

R-I or as respectively) but an electron's energy is conserved (and the electrons 

are thus repowered to compensate for losses). 

-i 
(i,-i; 3,3) The magnetic field decays as R and an electron's energy is steadily 

increased, proportional to R. Note equipartition holds for this combination. 

(3/2,-1; 3,3) The decay of the magnetic field, as R -3"2 ! , corresponds to conserva- 

tion of magnetlc energy and the electron's energy is again increased proportional 

to R. 

We now discuss additional considerations which might allow selection of the most 

likely model. 

The last four models, in which the electrons are repowered (i.e. increased in 

energy by, for example, conversion of bulk kinetic energy) over the whole radio-emit- 

ting lifetime (>104 yr), are attractive, since they might account for the diffuse cos- 

mlc ray distribution throughout the Galaxy. However, the observed decay of surface 

brightness must be attributed 50 the decay of the internal magnetic field. This leads 

to a possible problem with such models. When the internal field strength falls to 

the value of the compressed interstellar field, the decay in Z would presumably be 

slowed or halted (assuming the electron repowering mechanism to be still operative) 

leading to excessive numbers of old remnants, contrary to observation. 

On the other hand, a model which utilizes the compressed interstellar magnetic 

field is attractive, since it allows the initial electron energies to decay in a plau- 

, R -I . sible fashion as If the magnitude of the interstellar magnetic field is taken 

to be typically 5 ~G [ 54] and is enhanced by a factor of four during compression to 

a value ~2 x 10 -5 G, then a source with Z z I.i x 10 -20 W m -2 Hz -I -i sr (at diameter 

~45 pc) requires an energy density of the relativistic electrons equal to the energy 

density of the compressed field in order to account for its synchrotron emission. 

Such equipartition is of course a transient situation on this model. To account for 

the sources fainter than this requires very modest electron energy densities. How- 

, 10 -20 ever ~ ~ i.i x is approximately the lower limit of brightness to which statis- 

10-19 -2 tical samples are complete. The brightest shell remnants have Z Z 5 x W m 

-i -i 
Hz sr - e.g. Kepler's supernova (consideration of Cas A, which is i00 times bri- 

ghter than any other remnant is deferred until Section IV(b)). For Kepler's super- 

, 1048 nova the implied energy for equipartition is ~0.7 x ergs in both field and elec- 

trons [ 55], the implied field being ~I0-4G. If a field as small as 2 x 10 -5 G is 
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postulated (i.e. the compressed interstellar field), an electron energy of 0.8 x 1049 

ergs is required which, although an order of magnitude larger, is not unacceptable. 

A model with a = 0 (B = constant) therefore accounts for the evolution implied by the 

statistical data; no fundamental difficulties are evident. A possible distinction 

between models involves the position of the radio shell. In a (0,i; 3,3) model we 

expect the shock position to delineate the outer boundary of the radio emission. The 

amount of compression expected is 54 so that the relative shell thickness, AR/R, would 

be kl/10, compatible with the observed values. Leakage of relativistic particles 

might produce a plateau of emission external to the main shell. For the previous 

four models we might expect the radio emission to be approximately bounded by the 

inner surface of the swept-up interstellar matter. A more complete understanding of 

the optical and X-ray emission might possibly distinguish between these alternatives. 

Caswell and Lerche [49] gave experimental evidence favouring a compressed inter- 

stellar field model for the old remnants. There is no indication of a difference in 

the evolution of old and young remnants and we now suggest that this same model (0,i; 

3,3) is the preferred one to account for the bulk of the radio emission throughout 

the lifetime of shell SNRs. 

(C) ABE ISOTHERMAL AND ADIABATIC BLAST WAVE MODELS APPLICABLE TO SUPERNOVA REMNANTS? 

HEAT FLUX AND COLLISION FREQUENCY LIMITATIONS 

The heat flux q in an isothermal self-similar flow is determined by the energy 

equation 

(2r/t(5-~))(pV2/2 + 3kpT/2m) = QV(V2/2 + 5kT/2m) + q , (17) 

where m is the mean molecular weight of the gas. In particular, just behind the shock 

we have 

q(Shock) (i/2) po(a/Rs)~ 3 -2 = Vsn (~-i) (4-~), (18) 

where ~ is the ratio of density across the shock (~ = 4 for a strong adiabatic shock). 

But the heat flux i s  a l s o  g i v e n  by 

q = K~T/~r E KmV2k-I~-2(~-I)R~I~z/~ (19) 
s 

where K(T) is the coefficient of thermal conductivity and where I = r/Rshock,Z=T/Tshoc k 

Equations (18) and (19) thus determine the radial temperature gradient, which eviden- 

tly is required to be negligibly small: we must have 

l z/ xl <<  l, (20) 
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as a necessary condition for the validity of the assumed isothermal approximation. 

For simplicity, we shall consider conditions just behind the shock (~ = i) only. From 

(18), (19), and (20) we obtain the condition 

l~Z/~ll = (1/2) (4-~) (~-i) i/2~6 << i, (21) 

where 6 is the dimensionless quantity 

= n O [Rsk/K(Ts)] (kTs/m) I/2, (22) 

with n o = Q0(a/rs)~/m the upstream number density. 

Now for a fully ionized hydrogen gas we have [56] 

K(T) (T/106K)5/2.5.108 erg s -I -i K-I = cm . (23) 

With this value for K, 6 becomes 

6 = 19.5 (n0/icm-3)(Rs/ipc)(Ts/106K) -2. (24) 

t2/(5-w) But in a self-similar model the quantities Rs, no, and T vary with time as 
s 

t -2~/(5-~), and t -2(3-~)/(5-~) , respectively (the gas density ahead of the shock is 

taken to vary as r-W): accordingly, 6 varies with time as t (14-6~)/(5-~) Thus, 

even if inequality (21) is satisfied at some time, 6 increases with time (provided 

< 7/3), and the inequality is eventually violated. There is therefore a maximum 

time, tmax, beyond which the heat conductivity is not high enough to allow the use 

of the isothermal approximation (if ~ > 7/3, this becomes a minimum time). 

Before estimating tax, we note one other restriction. The isothermal (as well 

as the adiabatic) models use a one-fluid treatment. As is well known, this is valid 

only if the proton-electron energy interchange time T is much shorter than the flow 
e 

time Tf which can be defined in two ways: 

-i 
Tf = ~V/~r (25a) 

-i 
or Tf = V~InQ/~r (25b) 

At the shock (l = i) it can be shown [57] that definition (25b) is the more restric- 

<< Tf at I = 1 then becomes, with the use of T given by tive one. The condition T e e 

Spitzer [56], the following: 
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Tf/Y e = 1.2n-2(~-l) 3/2(R')-16 >> i, (26) 

where R' is given by 

2R' = (~-2)-i[ (3~-4) (n-l) + n~(7-3~) ]. (27) 

Condition (26) defines (for ~ < 7/3) a minimum time, tmin, before which the energy 

interchange time is not short enough to allow the use of a one-fluid treatment. 

In sum, the physical assumptions of the isothermal model can be satisfied only 

over the restricted time interval 

t << t << t (28) 
min max' 

where the lower limit represents the requirement that the collision frequency be high 

enough to ensure one-fluid behaviour and the upper limit the requirement that the col- 

lision frequency be low enough to allow the high heat conductivity needed for iso- 

thermal behaviour. The values of tma x and tmin, obtained by setting the quantities 

in (21) and (26) to i, are given by 

(14-6~)/(5-~) = (4_n)n(~_l)-i/26/2, (29) 
(t/tma x) 

(t/train) (14-6~)/(5-~) = 1.2 x (n-l) i/2(R')-16. (30) 

The quantity 6/t (14-6W)/(5-~) is a constant parameter of the model; t and t 
max mln 

thus are constants of a given remnant, as they should be. Their precise values depe- 

nd on n, which itself depends on ~. For illustration we use ~ = 0, which is the case 

of most physical interest, and for which the value n = 2.378 has been calculated [58]. 

For ~ = 0, we then have 

(t/tmax)14/5 = 1.646, (29a) 

(t/tmin)14/5 = 0.2476. (30a) 

We have used the value m = 0.62 m given by Solinger et al. [58]. An equation equi- 
P 

valent to (30a) has been previously given by Cox [ 59] in the context of an adiabatic 

treatment. 

Note that the ratio tmin/tma x is independent of 6; for ~ = 0 we have, from (29a) 
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and (30a), 

t . = 2.0t . (31) 
mln max 

Thus the maximum time is shorter than the minimum time, and the inequality (28) can- 

not be satisfied at all: there exists no time interval during which the twin physical 

requirements of an isothermal one-fZuid treatment can be satisfied. (It should be 

pointed out that we have defined the limits of validity by the rather generous cri- 

terion that a quantity required to be small become equal to i; had we used instead 

the more reasonable value of 0.i, the numerical factor in eq. (31) would be i0 instead 

of 2.) 

Table 2 lists some observed parameters of the four supernova remnants discussed 

in [ 58], along with the calculated values of the age t, tax, and tmi n. It is inte- 

resting that t is of the same order of magnitude as t and t . . In two of the 
max mln 

four cases we have tma x < t < tmin, implying that neither assumption of the isothermal 

one-fluid model is valid. 

The only way of finding some regime of physical validity for the isothermal self- 

similar blast wave models (other than placing one's hopes in the yet uncalculated and 

probably physically uninteresting large-~ range) would be to assume large deviations 

of plasma transport coefficients from the Coulomb collision values used above. A 

mere increase of the effective collision frequency is not adequate, as it would dec- 

rease both tma x and tmln. without significantly changing their, ratio: enhanced heat 

transfer by plasma turbulence is required. Such anomalous heat conductivity is like- 

ly to be accompanied by an anomalous viscosity, wh±ch would need to be taken into ac- 

count in the momentum equation, thus again rendering the self-similar approach ques- 

tionable. 

Finally, we point out that the argument against the physical validity of the 

adiabatic self-similar blast wave models [58] is closely related (and complementary) 

to the above considerations. The adiabatic approximation is valid if the heat flux 

q implied by the temperature gradient of the adiabatic model is negligible compared 

to the enthalpy flux density qE" Solinger et al. present (for the case ~ = 0) approxi. 

mate expressions for q and qE which, in our notation, yield the result 

qE/q = 1.02 ~(A)~17(I+3~9) >> i, (32) 

where ~(A) is the quantity ~ of equation (22) calculated from an adiabatic model~ For 

the same observed properties of a supernova remnant, the isothermal value 6(I) used 

up to now is related to it by 
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TABLE 2: INFERRED SUPERNOVA REMNANT PARAMETERS AND TIME SCALES 

PARAMETER 
REMNANT 

CYGNUS LOOP PUPPIS A VELA X IC 443 

rs(PC)* 18.5 8.5 20 i0 

T (106 K)* 2.9 7 4.3 17 
s -3 

n0(cm )% 0.33 0.8 0.i0 0.21 

6%% 14.2 2.71 2.11 0.142 

t(103 yr)§ 18 5.5 16 4.1 

t (103 yr)%% 5.8 3.2 ii 6.9 
max 
t . (103 yr)%% ii 6.3 22 14 
mln 

*Radius and X-ray temperatures taken from values published for Cygnus Loop [ 60], Pup- 
pis A and Vela X [61], and IC 443 [62]. 

%Adiabatic values from the references, modified by equation (23) of Solinger et al. 
[58] .  

%%Calculated from our equations (22), (29) and (30). 

§Calculated from r s and T s above for the isothermal model by using equation (22) of 
[ 58]. The results sometimes differ from the adiabatic model values of the original 
references (tabulated in [58]),which do not always include the 0.8 difference between 
the observed temperature and the shock temperature in the adiabatic model and often 
use m/mp = 0.5 instead of 0.62. 

~(I) = 2.03 ~(A). (33) 

The inequality in (32) is the condition for the validity of the adiabatic approxima- 

tion. As Solinger et al. point out, even if this inequality is satisfied at ~ = I, 

the enormously rapid decrease of the i17 factor in equation (32) will cause it to be 

violated at some depth within the blast wave, usually not far at all from the surface. 

In Table 3 we list, for the four observed remnants under discussion, the calculated 

values of the dimensionless parameters which are required to be <<i for the validity 

of (i) the isothermal approximation, (ii) the one-fluid approximation (for the iso- 

thermal model), and the adiabatic approximation at (iii) ~ = i, (iv) I = 0.9, (v) ~ = 

0.8. It is evident that none of the four remnants meets all the conditions required 

for either the isothermal of the adiabatic models. 

One fundamental root of these difficulties is related to the fact that a self- 

similar solution can exist only if the system contains no significant length or time 

scale. The heat conduction coefficient, however, defines such a length scale, viz., 
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INFERRED VALUES OF DIMENSIONLESS PARAMETERS REQUIRED TO 

BE SMALL (<<i) FOR VALIDITY OF VARIOUS APPROXIMATIONS 

APPROXIMATION PARAMETER CYGNUS LOOP PUPPIS A VELA X IC 443 

ISOTHERMAL ~z/~l 23.3 4.4 3.5 0.23 

ONE-FLUID Te/T f 0.29 1.5 1.9 28.5 

i = 1 0.035 0.18 0.24 3.5 

ADIABATIC q/qE 0.9 0.39 2.0 2.6 38.8 

0.8 4.4 23.3 29.9 443. 

L H (m/kTs)I/2 K(n0k) -I = Rs/6 (34) 

and a self-similar solution can therefore be found only when this length scale is 

effectively 0 or ~, i.e. in the adiabatic (6 -~) and the isothermal (6+0) limits [63]. 

As can be seen from table 2, the values of 6 calculated for the observed remnants are 

often of order of magnitude i, and thus neither limit is appropriate. 

In short, both the adiabatic and the isothermal self-similar models are ques- 

tionable for SNRs on the grounds of physical validity: the isothermal models are 

also questionable on the grounds of instability [57] as are the adiabatic models [ 64, 

65]. Accordingly, we strongly suggest that nO self-similar solution adequately des- 

cribes the evolution of an SNR. 

This implies that, even in a spherical supernova explosion, the fluid flow mr~st 

be a function of radius and time separately and not just in a self-similar combina- 

tion. It is also probable that finite heat conduction in a two-fluid plasma plays 

a significant role. Until calculations including such effects are forthcoming, the 

interpretation of quantities inferred by applying self-similar models to observed 

SNRs must remain doubtful. 

These last remarks may be amplified by considering what use is actually made 

of the self-similar models in interpreting the observations. In recent years most 

attention has been devoted to X-ray observations. The observed parameters of an SNR 

then are the radius Rs, the X-ray temperature Tx, and the X-ray luminosity L in some 

energy range AE; if the system is optically thin in this range, however, it can be 

assumed that only the ratio X H L/P(A£, T x) is physically significant, where P is 

the appropriate volume emissivity. One then seeks to determine the total energy of 

the remnant W, its age t, the ambient density no, and the shock temperature T s (as 

well as the temperature elsewhere within the remnant). From dimensional analysis, 

these must be related to the observed quantities Rs, Tx, and X as follows: 
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W = xl/2Rs3/2Txgw(~), t = Rs(m/kTx)i/2gt(~), 

n o = xl/2Rs-3/2gn(~) , T s = TxgT(~) , (35) 

where the g's are dimensionless functions of the one significant dimensionless para- 

meter of the system, 6 as defined in equation (22) or some equivalent combination. 

(There exists another dimensionless parameter, x-l(Ts/mr~)3/24 However, its 

appearance would imply that the radiation is affecting the dynamics of the system, 

something that is believed to happen only at a later state of the remnant's evolution 

(see Section V dealing with the phase III evolution of an SNR and the thermal insta- 

bility) ). 

The various models are used to calculate the functions g. The adiabatic self- 

similar model provides the limiting value g(6~): the isothermal model provides g(0). 

Our point is that neither of these two limits represents a valid, physically reali- 

zable approximation. Thus we have at present no usable knowledge of the functions g 

and therefore, in the absence of further calculations, no firm method for computing 

the basic parameter8 of supernova remnants from their Observed properties. In addi- 

tion, the instabilities of the models should caution us that there is a hidden assum- 

ption in equation (35) - namely that W, t, no, and T s are uniquely determined by Rs, 

Tx, and X - which may need to be reexamined. 

IV THEORETICAL EVOLUTION OF YOUNG (PHASE I?) SUPERNOVA REMNANTS 

(a) GENERAL REMARKS 

The radio and optical brightnesses, together with the radio distributions across 

young SNRs, such as Cas A and Tycho, have now been resolved. This has led to more 

detailed theoretical developments of the hydrodynamics involved. The major lack in 

improving our understanding has been, and continues to be, the absence of a well- 

defined theory for the first stages of a supernova explosion. Rosenberg and Scheuer 

[66] considered the simple case of a solid piston pushing outward into a cold exter- 

nal medium. More detailed models of ejection have been constructed by Gull [46]. 

Gull concluded that once the ratio of swept-up mass to ejected mass exceeded about 

0.5, the structure and dynamics seemed to be independent of the initial conditons. 

As the remnant expanded the ejected mass cooled to form a thin shell separated from 

the hotter, shocked interstellar medium by a contact discontinuity behi~ the shock 

wave (Figure 2). Viewed from the decelerating frame of rest of the shock, the denser 

shell of ejected mass lies "above" the lighter gas and a Rayleigh-Taylor instability 

should occur [57,64,65,67]. 
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Fig. 2. Computer model of a 
supernova remnant 
without convection 
showing a Rayleigh- 
Taylor instability 
at the outer edge of 
the ejecta. The explo- 
sion parameters are: 
energy = 1051 ergs, 
mass ejected = 1033 g, 
external density = 1 
atom cm -3 . (Figure 
from [46]) 

To obtain a rough estimate of the Rayleigh-Taylor instability scale length con- 

sider the case of a spherical shock front with Rshoc k = R0t2/5 and with two uniform 

adiabatic fluids of densities Pl(Outside) and P2(inside). From the frame in which 

the shock is at rest, each fluid is accelerated radially outward with an accelera- 

IRshockl = 6/25 Rshock/t2. At the shock, fluid 1 has an inward radial velocity tion 

Vshoc k = 2/5 Rshock/t, fluid 2 has an inward radial velocity V 2 = [(~-l)/(y+l)] Vshoc k, 

and Q2 = (~+l)/(~-l)Pl" Here y is the ratio of specific heats, and, for the purposes 

of illustration, we have assumed a strong shock. 

Now interchange, by a radial distance Ar, two equal volumes of fluid at the shock. 

Then since Pl < P2 there is a net downward (radially ingoing) buoyancy force on the 

interchanged fluid element 1 amounting to an equivalent potential energy P.E. ~ (PI- 

p2 ) l~shockl Ar. 

There is also an excess hydrodynamic pressure pushing radially inward on fluid 

element 1 corresponding to an equivalent excess kinetic energy KE > ½(Dl V2 
- shock - Q2 

2 
V2). Estimating the instability scale length by equating the magnitudes of P.E. and 

K.E. we have 

Ar z ((y-l)/(y+l)) V~hock/IRshock] ~ (2(y-l)/3Cy+l))Rshoc k . 

Thus interchanging two fluid elements across the shock leads to a Rayleigh-Taylor 

instability with an interchange scale-length ~r of about 2/3 Rshoc k (~-i)/(~+i). For 

y = 5/3, appropriate to a fully ionized gas, Ar z 0.2 Rshoc k. This condition is how- 

ever overly restrictive on three counts: (i) we also have to allow for the excess 

pdV energy released;(ii) we have considered only radial displacements of fluid ele- 

ments; (iii) non-linear terms have not been included. 
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The first of these effects changes the instability criterion by roughly a factor 

2, while the second loosens it by an amount which depends on the type of fluid per- 

turbation being considered. About the best that can be argued without performing 

extremely detailed computations (see e.g. [64,65]) is that scale lengths ~Rshoc k are 

the most likely to be enhanced by the Rayleigh-Taylor instability. Recently Lerche 

and Caswell [68] have derived both the correlation function and associated power spec- 

trum for the rotation measure (RM) across Tycho's SNR, G120.I+1.4. They find that: 

(i) the average gradient of RM across Tycho is essentially perpendicular to the gala- 

ctic plane; (ii) a scale length approximately equal to Tycho's radius can be identi- 

fied in both the correlation function and the power spectrum. The gradient in RM 

they attribute to the cumulative effect over the path length to Tycho of gradients 

(across the angle subtended by Tycho) in the galactic magnetic field and electron den- 

sity. Since the theoretical estimates of the Rayleigh-Taylor instability within Tycho 

indicate a scale length similar to that observed the suggestion is that the turbu- 

lence is dynamically evolving with the SNR. For the first time, it would seem that 

we have a quantitative measure of both the intensity and correlation scale of the 

turbulent structure in a supernova remnant. 

(b) CAS A - SOME GENERAL PROBLEMS 

Gull [46] has given a comparison of his models with the observations of Cas A 

and Tycho's SNR. Theoretical and radio data have to be used to determine an esti- 

mate of the mass ratio. Gull assumes that the minimum energy in fields and particles 

is the same as the turbulent energy he computes to be present in his models. The 

physical parameters of these remnants may then be calculated (Table 4). 

TABLE 4: SOME RELEVANT PARAMETERS FOR THE YOUNG SUPERNOVA 

REMNANTS CAS A AND TYCHO 

CAS A TYCHO 

DISTANCE (kpc) 

MASS-RATIO 

ENERGY OF THE EXPLOSION (Joule) 

EJECTED MASS (M@) 
EXTERNAL DENSITY (atoms cm -3) 

AGE (yr) 

PREDICTED SECULAR RATE OF DECREASE OF FLUX 
(per cent per yr) 

3.4 2~ 

1 3 

5 x 1044 1 x 1043 ~17/7 
2.5 0.13 g3/7 

2.2 0.18 8 -19/7 

200 400 

0.9 0.4 

As Gull himself points out, the resulting estimates are very sensitive to any 

failure of the assumption of equipartition between fields and particles. 
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Indeed, there are some rather general problems associated with Cas A. In par- 

ticular Cas A has a radio surface brightness much higher (by a factor of about i00) 

than that of any other galactic SNR and is probably the youngest (<300 yr). It there- 

fore provides unique information on young remnants, but this very uniqueness makes it 

hazardous to treat Cas A as a typical remnant. However, because it (i) shows a clear- 

ly defined shell of much the same type as the older remnants, and (ii) lies approxi- 

mately on the extrapolation of the Z-D relationship derived for older remnants (see 

CC), detailed comparison with older remnants is appropriate. 

Two aspects of its evolution, the secular decay in brightness and the asymmetry 

of the shell, are now linked by the recent observations of Bell [69], where differences 

in the secular change of different features have now been recognized. 

(i) The Asymmetry of Ca8 A and its Variation with Time 

High-resolution maps of Cas A [69] show an asyrm~etry with the brighter side nea- 

rest to the galactic plane. Is this evidence of interaction with the interstellar 

medium of the type we have previously investigated [49]? We suggested there that for 

old remnants the gradient in ~ may have comparable contributions from dp/dz and from 

dB/dz. In a young remnant, even if the magnetic field were internally generated, the 

dp/dz effect of the general galactic gradient might be present. 

Bell's maps [69] show the relative brightness of the side further from the plane 

decaying with time at a rate faster than the side nearer the plane, implying that 

the gradient is being enhanced and is not the residual effect of asymmetry in the 

explosion. However, the difference in decay rates is enormous in view of the small 

size of the remnant; over five years, the decay of the "half" further from the plane 

is larger than that nearer the plane by a factor of ~130/30. Since the effective 

separation of the halves is ~2 pc, the scale heigh~ of the Z variation is also only 

~2 pc. The measurement of variations in features of size covering many beam areas is 

subject to increased instrumental uncertainties, but Bell maintains that such effects 

are unlikely to be wholly responsible for the secular change in brightness gradient. 

Additional measurements are urgently needed, should they confirm the rapid variation 

over the remnant, it would then seem that a small (~2 pc) cloud is responsible, with 

the alignment relative to the galactic plane due to chance alone. 

The total rate of decay is clearly some combination of the variation with time 

of the intensity of the small-diameter features (several of which are rapidly brighten- 

i~ [69]), and that associated with the more diffuse emission which accounts for >90% 

of the total. The rate is also non-uniform at low frequencies [70,71]. Despite these 

shortcomings it seems relevant to reconsider the decay problem from a simple theore- 

tical viewpoint. 
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(ii) Secular Decay - The Simple Theory 

For any given SNR the theory of Section III(iii) indicates a variation of sur- 

face brightness Z, or flux density S, as 

dln~/dlnt = A; dlnS/d£nt = A + 2£, 

(see eqns. 12 and 13). 

Indeed Shklovsky [ 50] has used this information in the case of the SNR Cas A to 

account for the observed decline in flux of order 1% per year. He chooses the model 

(3/2,0; 3,3) in the nomenclature of Table i, with y = 2.6 (observations of Cas A indi- 

cate a spectral index of about 0.8). Then, from Table i, 

A = (ii + 3y)(5E/2)/I0 = -4.7£, 

and A + 2e = -2.7e; 

thus d~nS/dt = (A + 2£)/t = -2.7et -I. 

The appropriate value of e is its current value, and the value of t is the apparent 

age corresponding to the radius extrapolated back to zero using the current value of 

For Cas A the current value of £ is not known, although it probably lies between 

2/5 and i; nor is the age known. However, the current radius, and the expansion velo- 

city of optical features have been measured. Taking this velocity to be also repre- 

sentative of the bulk of the radio emitting region, the "age" of ~300 yr inferred 

from these measurements (assuming that £ = i) is actually a measure of the required 

quantity, t/e. 

Thus we have d£nS/dt = -2.7/300 = -0.9% per year, which is superficially in 

agreement with the early observations as noted in [50]. 

For comparison, we note that if the model (0,i; 3,3), which we favoured for older 

remnants, is adopted for Cas A, an analysis similar to the above yields a predicted 

decay rate of 0.53% per year. 

However, because the more recent observations [69-71] reveal non-uniformity of 

the decay, both spatially and temporally, the agreement with the original cruder ob- 

servations can no longer be regarded as a satisfactory discriminant between compe- 

ting models. On the other hand, additional measurements are needed before the com- 
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plexity of the new observations can be understood well enough to merit more detailed 

models. 

(iii) Is the Magnetic Field of Cas A Internally Generated? 

It has commonly been assumed (and occasionally argued) that the field and par- 

ticles are internally generated for a remnant as young and intense as Cas A. For 

instance, energy equipartition between electrons and field (the minimum energy con- 

figuration), indicates a field strength of ~4 x 10-4G, with energies of ~2 x 1048 

ergs resident in each component. If the field were only 2 x 10 -5 G, then the relati- 

vistic electrons would need to have an energy of ~1.8 x 1050 ergs. While this is a 

larger electron energy than in several previously proposed models, there does not seem 

any compelling reason for discounting it out of hand. If we accept this as a serious 

possibility, it may then be desirable to contain the electrons within a strong mag- 

netic field shell which is intense but not very thick - perhaps generated at the inter- 

face of the ejecta and the swept-up matter, as originally envisaged by Kulsrud et al. 

[72] and investigated in more detail by Gull [46]. If such a field is generated in 

the manner proposed by Gull, it is difficult to See how its extent could be suffi- 

cient to produce the observed thick radio shell. 

A further question concerns the plateau surrounding the shell. It has a surface 

brightness which is ~5% of that of the shell. Relativistic electrons leaking out 

into the uncompressed medium could account for emission just ahead of the shock front. 

This contrasts with the interpretation of Bell et al. [73] in which the emission ari- 

ses internal to the shock boundary but exter~al to the interface of ejecta and inter- 

stellar medium, where Gull [46] suggests most of the emission is generated. 

Finally, the radial component in the magnetic field requires some explanation. 

It would be valuable to know whether polarization occurs principally in the small- 

diameter features, or in the more diffuse emission, or equally in both. It might 

represent a relatively small component of the emission generated according to Gull's 

mechanism, the remainder arising in the field of the compressed interstellar medium. 

In su~aary, most of the Cas A observations can be satisfactorily accounted for 

by several alternative models so that no definitive choice can yet be made on obser- 

vational grounds. 

V THERMAL INSTABILITY IN SUPERNOVA SHELLS (PHASE III?) 

When the blast wave from a supernova reaches a radius at which radiative cooling 

of the shocked gas can dissipate a significant fraction of the energy of the blast, 

a dense shell of gas forms behind the shock. The temporal evolution of such shells 

has been considered [59,66,74-78]. Presumably this shell is what we see in the photo- 
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graphs of SNRs - e.g. the Cygnus Lgop, Vela X-I. The filamentary structure obviously 

present (see Figure 3) has not been considered earlier in this lecture. 

The structure would seem to be consistent with multiple sheets of dense gas ori- 

ented parallel to the shock front and seen edge-on. The thermal instability [79,80] 

has been proposed [81] as the underlying cause of the filamentation. Basically it 

operates as follows: If a gas cools by binary atomic encounters in an optically th~n 

situation, the cooling rate per particle can be written nA(T) ergs where n is the 

proton number density and, in the temperature range 104 K < T < 106 K, the cooling 

function A(T) has been estimated [82] to be given by A(T) = 5 x 10 -22 exp(-5.104 K/T) 
3 -i 

erg cm s (based on the assumption of ~thermal radiation in local thermodynamic equi- 

librium). 

A dense region of gas cools more rapidly than its surroundings. The propensity 

of the gas to approach, or maintain, pressure equilibrium with its surroundings then 

leads to a "runaway" situation: the cooler it gets, the denser it becomes so the 

more it radiates, the cooler it gets, etc. 

In a stationary gas, with spatial density variations, which is cooling from high 

temperatures, the condition for development of the thermal instability is d~nA/d~nT<2 

[79,80,83]. But in a supernova shell complications set in because the gas behind 

the shock is not uniform in space or time~ 

With McCray et al. [81] we give a simplified version of the argument considered 

appropriate for SNRs. 

Following Cox [74] the idealization is made that curvature and deceleration of 

the shock front are ignored. The unperturbed shock structure is then a steady one- 

dimensional flow described by proton number density, n0(x) , velocity V0(x), tempera- 

ture T0(x), and pressure P0(x). The equations describing the thermal instability 

are [79,80] 

dn/dt + nV.v = 0; (36) 

n~d~/dt + Vp = -V(B2/8~), (37) 

dp/dt - ypn-ldn/dt + n2(y-I)A(T) - (y-I)V.(<VT) = 0, (38) 

p = nfkT (39) 

where d/dt = ~/~t + ~.V, K(T) is the coefficient of heat conduction, ~ is the mean 
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Fig. 3. A Cerro-Tololo Schmidt camera photograph of the Vela-X SNR taken in U.V. 
light. The position of the pulsar PSR 0833-45 is marked. 
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molecular weight per proton, ~ is the ratio of specific heats and nf is the free par- 

ticle density. Viscosity is ignored. The thermal conductivity and magnetic field 

terms will initially be set to zero and commented on later. 

We assume that the upstream pressure is negligible (very strong shock) for steady 

flow. Equations (36)-(39) then yield 

n0V 0 = NV, (40) 

2 = ~NV 2, (41) 
P0 + ~n0V0 

V0(d/dx)[y(y-l)-ip0n0 -I + ½~V~] + n0A(T0) = 0 (42) 

where N is the upstream proton density and V is the shock velocity. 

ratio u = n0(x)/N = V/V0(x), so that 

Define a density 

T0(u ) = ~n0V2(kn')-l(u-i - u-2), (43) 

and P0(U) = n'kT0(u ) . (44) 

The shock front is assumed to be very thin compared with the characteristic cool- 

ing length so tha u I = (y+l)/(y-l) (u I = 4 for y = 5/3), where the subscript 1 indi- 

cates the value of the variable immediately behind the shock. 

Define a characteristic cooling length 

L 1 = ~VI3 / (y-l) nlA(TI) = ~V3[ (y-l) uI4NA(TI) ]-i. 

The solution of equation (42) is 

lu (Ul/U)4[>_(y_l)u_l]A(Tl)A(T0)_id u 
x(u) = i I Ul 

where T O and T 1 are related to u and u I by equation (43). 

(45) 

(46) 

-I 
As a specific illustration consider a shock moving with velocity V = i00 km s 

-3 
into a medium of hydrogen density N = 1 cm and cosmic abundances. The upstream gas 

is assumed to be photo-ionized by radiation from the shock. Then > = 5/3, u I = 4, 

n'/n = (2nH+3nHe)/n H = 2.3, ~ = 1.4 mH, and T 1 = 1.37 x 105 K. From the time-depen- 

dent radiative cooling function calculated by Kafatos [82] we have L 1 = 3.9 x 1016cm. 
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The solution to equation (46) is shown as curve (a) 

r,~ 
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D is tance  f rom 

Fig. 4. Gas density in a radiatively cooling 
shock: (a) uniform upstream density 
N = 1.0 cm-3; (b) uniform upstream 
density N = 1.2 cm-3; (c) sinusoidal 

upstream density variation. (Figure 
from [81] ) 

of Figure 4. The temperature 

does not fall much below 104 K 

because the cooling function does 

not include any trace-element cool- 

ing below 104 K. The main pro- 

perty of the solution is the col- 

lapse of the gas to high density 

and low temperature such that 

approximate pressure equilibrium 

is maintained in the cooling re- 

gion behind the shock. (The tem- 

perature T varies approximately 

as i/n.) 

Now if the shock is moving 

into a region of variable density 

then the effect of increasing N 

is to reduce the scale length L I, 

so that the location of the ther- 

mal collapse is closer to the shock 

front. This is illustrated by 

curve (b) of Figure 4, which is 

the solution to equation (46) with 
-3 

an upstream density N = 1.2 cm The upstream density fluctuation is reflected as 

a much greater density fluctuation at a fixed distance from the shock, as indicated 

by the arrow which shows an 8:1 density fluctuation in the collapsing region. 

The condition for large amplification of an incoming density fluctuation can be 

derived in a simple way by taking A(T) ~ T s. Suppose the shock enters a reglon where 

the upstream density has a fluctuation N + N + ~N. This fluctuation shows up as a 

density fluctuation ~n in the downstream cooling reglon, related to ~N by 

6n/6N [i + (U/Ul)3-S (LiYUl)-l]n/N. = x (47) 

Equation (47) shows that if S < 3, an upstream density fluctuation will be amplified 

by a large factor in the collapsing region. 

The condensations will continue to collapse and cool until radiative cooling 

shuts off, in such a way that approximate pressure equilibrium is maintained between 

condensations and the surrounding gas. When the cooling ceases the condensations 

halt their collapse but the surrounding hot gas continues to cool radiatively. The 
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dense condensations then begin to expand and dissipate. 

The maximum density contrast can be estimated by the pressure equality condition 

nit I = nma x Tmi n where Tmi n is the temperature at which the radiative cooling shuts 

off. For the example chosen, T 1 = 1.37 x 105 K, and the radiative cooling function 

shuts off effectively at T • m 8000 K, so that the downstream density contrast may 
mln 

reach ~17. 

The nonlinear development of density fluctuations is illustrated schematically 

by the dashed curve (c) of Figure 4. A density fluctuation entering the shock has 

its scale length compressed first by a factor 4 in the adiabatic shock. Then it is 

further compressed by a factor ~17 by thermal instability. Therefore, the net com- 

pression along the flow direction is ~70. If an incoming condensation has roughly 

equal dimensions parallel and perpendicular to the shock, we would expect it to be- 

come a sheetlike structure with transverse dimensions ~70 times greater than its thick- 

ness. 

The development of the condensations after their temperature drops below 8000 K 

is uncertain. In the above analysis the condensations are assumed to be optically 

thin to the emitted radiation. But when the temperature drops below 8000 K the hydro- 

gen recombines significantly, the heating due to photo-absorption of radiation from 

the hotter gas is then comparable to radiative cooling. The heating may be strong 

enough to prevent the sheets from cooling and collapsing further, so that they expand 

again and dissipate. Alternatively there may be enough radiative cooling below 8000 

K so that the thermal collapse continues [ 74]. When the temperature drops below ~5000 

K the gas ceased to emit the strong optical lines by which we observe the filaments. 

Various effects modify the development of the thermal instability. Magnetic pres- 

sure may limit the development of dense filaments if the field is aligned parallel 

to the shock front. To estimate this effect, assume that the frozen-in magnetic field 

is compressed in one dimension perpendicular to the shock front, and set the gas pres- 

sure immediately behind the shock equal to that of the compressed field: 

3N~V2/4 = (nmaxB0/N)2/(8~). (48) 

With a typical interstellar magnetic field B 0 = 3 x 10 -6 gauss, N = 1 cm -3, V = i00 

-i 
km s , we find nmax/N ~ 20, instead of z70 with B 0 = 0. Older remnants (IC443, the 

Cygnus loop, CTBI) show a close correlation between optical and radio emission. The 

magnetic field appears to be aligned with the thin filaments. 

Thermal conduction suppresses the growth of short-wave-length perturbations. 
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TO estimate this effect, approximate the conductivity term in equation (38) by KT/L 2, 

where L is the scale length of the fluctuation, and set the rate of radiative cooling 

equal to the rate of conductive heating to obtain a critical scale length 

L z (KT/n2A(T)) I/2. (49) 
c 

Perturbations of scale length L ~ L will be damped by thermal conduction. The thermal 
c 

conductivity for a fully ionized monatomic gas [56] is K = 1.2 x 10 -6 T 5/2 ergs cm -I 

K -I s -I. Then the ratio of L c to the cooling length L 1 is 

Lc/L 1 ~ 0.3 (T/105K)i/4exp[-2.5 104/T]. (5O) 

Thermal conduction prevents the collapse of fluctuations of scale length ~0.3 L 1 (up- 

stream wavelength ~LI). 

The simplified one-dimensional analysis presented here demonstrates that thermal 

instability in a radiatively cooling Shock may be responsible for the fine structure 

in supernova shells. The obse~n)~d structure is the result of non-linear amplifica- 

tion, and is modified by two-dimensional effects such as the bending of shocks around 

density fluctuations and oblique magnetic fields. Numerical hydrodynamical simula- 

tions are required. Chevalier and Theys [ 84] have made some preliminary numerical 

studies along these lines. The results of more detailed studies will be of consider- 

able interest. 

VI SUMMARY 

The observations of SNRs reveal a host of phenomena that have only recently (with- 

in the last decade or so) started to come under intensive scrutiny by theoreticians. 

(Reviews of observational aspects of SNRs are provided by Caswell [3] and by Radha- 

krishnan [85]. 

Perhaps the most relevant question we can ask of theory, of concern to this meet- 

ing, is under what conditions the implosion of massive stars produces neutron stars 

(pulsars?) and/or black holes. The numerical codes are, apparently, still not accu- 

rate enough to provide unequivocal answers to this important problem. 

Barring our way to an understanding of the initial phase of a supernova is the 

lack of a detailed model of the explosion and the dynamical behaviour of the ejecta. 

Some simple models have been constructed, but it is not known to what extent they 

are an accurate representation of reality. Further, the appearance (on both theore- 

tical and observational considerations) of a Rayleigh-Taylor instability at this early 
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stage in the evolution of SNRS should caution us that this first stage of evolution 

is most likely considerably more complex than might otherwise have been thought. Pro- 

blems associated with Cas A, probably one of the youngest SNRs, presumably reflect to 

some extent this uncertainty in our knowledge of the initial phases of the explosion. 

Phase II evolution was long thought to be well understood. But recent work over 

the last five years has shown that both the adiabatic and isothermal models are not 

accurate representations of supernova blast waves. The so-called adiabatic models 

have too large a heat flux to really be adiabatic and, furthermore, they are unstable 

to at least small amplitude perturbations. The isothermal models suffer from the 

deficiencies that their heat flux is not large enough to maintain the assumed iso- 

thermality, the ion-electron collision time is not small compared to the hydrodynamic 

time scale (hence a one-fluid treatment is inadequate), and, anyway, the isothermal 

models are also unstable - both to small amplitude waves and also globally. 

The observed statistical distribution of supernova with radio surface brightness 

can be accommodated on a variety of possible models. It does not provide a very sele- 

ctive tool for eliminating any (except a very few) of the models proposed over the 

years to account for the behaviour of the "average" supernova remnant. 

The observations of dense filamentary structure in older SNRs has been accommo- 

dated recently by theoretical calculations which provide for a thermal instability 

operative when radiative cooling is significant. But the observations of rapidly 

moving optical "knots" in Cas A, of the filamentary and wisp structures in the Crab 

nebula, and of the absence of a direct correlation between the optical and radio emis- 

sion in the young SNRs Tycho, Cas A and SN 1006, strongly suggests that not all fila- 

mentary structure can be so provided for. Some other mechanism must be operative. 

In short: supernova remnant theory is in a state of flux. Many of the latest 

observations have caused us to seriously question the detailed development of the 

physical tenets co,only thought to underpin certain stages in the evolution of SNRs. 

The theoretical embellishments that have been necessitated by the observations 

are still on-going. They have not yet reached a stage where one can say there is 

close agreement between theory and observations. Thorne's [2] 1969 remark still stands 

a decade later. We hope it will not stand too much longer. 
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THE PULSAR MAGNETOSPHERE 
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I INTRODUCTION THE CHARGED MAGNETOSPHERE 

The canonical pulsar model - a rotating magnetized neutron star with the magnetic 

axis inclined to the rotation axis [i] - was first discussed by Pacini [2] some time 

before the actual discovery of pulsars in 1967. Pacini applied the electromagnetic 

field solution obtained by Deutsch [3] to the assumed vacuum region surrounding the 

obliquely rotating neutron star, which is taken to be a classical perfect conductor. 

Far from the star the field is essentially that due to a dipole of moment ~ inclined 

at an angie X to the rotation axis, defined by the unit vector ~. The component 

p cos X along ~ maintains a steady field, falling off at distance r like i/r~ whereas 

the component p sin X perpendicular to ~, rotating with the angular velocity ~ of the 

star, emits classical magnetic dipole radiation of frequency ~, carrying away energy 

per second 

(2~2e~/3c3)sin2 X = (B~R6~/6c3)sin2x , (I) 

where B is the polar field strength on the star of radius R. The emission of this 
s 

wave implies a rate of loss of rotational kinetic energy -I~, where I is the moment 

of inertia of the star, a quantity that is fortunately not too sensitive to possible 

large uncertainties in the equation of state of the neutron star matter. From the 

observed normal steady increase of pulsar periods, and with X assumed not too small, 

one can infer from a neutron star radius R = 106 cms a surface field B of a few 
s 

times 1012 gauss. 

The energy carried by the wave is available to supply energetic particles to a 

surrounding nebula [4,5] . The close coincidence between the decrease rate of the 

rotational energy of the Crab pulsar and the observed synchrotron loss rate from the 

Crab nebula leaves little doubt that the long-standing mystery of the Crab nebula's 

energy supply has been resolved by the discovery of the pulsar. One of the objects 

of magnetospheric theory is to understand precisely how this energy conversion takes 

place. And to put the whole problem into perspective, it should be remembered that 

the energy emitted in the radio pulses is a very small fraction - never more than 

one percent - of the total energy loss, as inferred from the slowing down of the 

pulsar. Energetically the pulses are a diagnostic of the basic problem of construct- 

ing a realistic magnetosphere; however, understanding of magnetospheric structure 
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may very well help in locating the regions from which the pulses (in all frequencies) 

originate, and in deciding on their generating mechanisms. Of particular signific- 

ance for the work outlined below is the tentative evidence that gamma-ray emission 

may become a larger fraction of the total power, as the pulsar ages. 

Besides the braking torque about the rotation axis ~, the electromagnetic field 

around an oblique rotator exerts a precessional torque about the axis lying perpendi- 

cular to ~ in the plane (~,k__), which acts in the sense tending to reduce theangle 

between ~ and ~ [6-8] . The response of the star to this torque is complicated by 

the quasi-rigidity of the crystalline mantle [9] , but the two axes will ultimately 

align: the magnetic axis (frozen into the star) rotates in space until it coincides 

with the invariant angular momentum vector, while simultaneously the instantaneous 

axis of rotation precesses through the star. The perpendicular dipole component 

disappears, and the vacuum wave model predicts a vanishing of the energy emission 

from the star. 

The original justification for assuming a strict vacuum outside the star der- 

ived from the minute thermal scale-height expected in a gas supported against the 

enormous gravitational field by any plausible temperature. It therefore seemed al- 

most inevitable that not only would the thermal and gravitational energy densities 

be negligible compared with the electromagnetic, but that also the charge-current 

density outside the star would be insignificant as sources of the electromagnetic 

field. This view was challenged in a classical paper on the aligned rotator by 

Goldreich and Julian [i0], who argued rather that the environs of the star should 

not be treated as an electrodynamic vacuum, and inferred, significantly, that the 

aligned magnetic rotator would also lose energy through emission of an electrostati- 

cally-driven wind. The essence of the argument is as follows. Within the rigidly 

rotating star, the familiar perfect conductivity condition yields the "co-rotational 

electric field" 

= -e (kxr) xB/c = -c~t_xB_/c, (2) 

where r is the position vector from the star's centre, t the unit toroidal vector, 

and • the axial distance. With no external charges, the steady-state electric field 

~= - V~ has a scalar potential ~ satisfying Laplace's equation. The appropriate 

solution for ~ must fall off properly at infinity and yield a horizontal component 

E = -(~r~@)R (written in spherical polar coordinates) continuous with that within 

the star, given by (2). These conditions suffice to determine the whole solution; 

in particular -(~/~r)R will in general differ from that given by (2) for the stellar 

interior, implying a finite surface-charge density. Further, the external field 

will in general have a component ~II along B of the same order as that perpendicular 

to it, so that the surface charges will be subject to electrostatic forces which are 
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far larger than the restraining gravitational forces. Provided the charges are not 

quantum-mechanically bound to the star (and earlier estimates of the ionic work func- 

tion have now been substantially reduced [ii] , then these unbalanced electrostatic 

forces must pull charges out of the star, which will radically alter the magnetos- 

phere. 

It is convenient to write the external steady-state electric field as 

E = -V# = -c~t__xB__/c - V~ (3) 

The vacuum condition 4XPe = V.~ = 0 yields a non-corotational part -V~ which is of the 

same order as the corotational part. Goldreich and Julian argued that instead the 

magentosphere would spontaneously charge up until the vacuum condition is replaced 

(at least to a first approximation) by the "plasma condition" 

E.B = 0: (4) 

i.e. charges are assumed available to short out the electric field along the magnetic 

field. If this is so, then 

B.V~ = 0: (5) 

the zero value of ~ within the perfectly conducting star is propagated into the mag- 

netosphere, and (2) holds everywhere. The charge-density required to maintain the 

field (2) is 

pe = V .E/4~ = - (e/2~c) k. {B- (1/2) r_x (?xB_) }. (6) 

In a normal plasma this is the algebraic excess of the ionic density over the elect- 

ronic. However, if the magnetosphere is built up by the action of electric forces, 

as outlined above, it is reasonable to postulate that there is present just one sign 

of charge at each point. Alternatively, one can argue that a mixed plasma with the 

required net charge density (6) would not persist. The small but finite gravitational 

and centrifugal forces acting e.g. on electrons in a negative zone would normally have 

components along the magnetic field and so would require a small but finite force -eE l  I 

to balance them; the resulting force ZeEllon the ions would assist the non-electromag- 

netic forces in draining the ions away. Thus we think provisionally in terms of "ele- 

ctron domains" and "ion domains", with Pe given respectively by -n e or n. Ze in an ob- 
e 1 

vious notation. 

It is instructive to contrast the properties of this charge-separated "plasma" 

with a normal plasma. Compare the order of magnitude of the charge density (6) in 
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a positively charged domain within a normal plasma with the local ion density: 

0e/niZe -~ (~B/2~c) / (Q/Am H) Ze = (B2/8~Qc2)4(o~/O3g) (7) 

where ~ = ZeB/AmHc = non-relativistic Larmor gyration frequency in the local field 
g 

B. The ratio e/~g of a macroscopic to a microscopic frequency is a very small num- 

ber; also, the magnetic energy density B2/8~ is normally much less than the Einstein 

rest energy density pc 2 . Thus in a normal plasma the ratio (7) is minute; and like- 

wise in an electron domain. But in a charge-separated domain, Pe is by definition 

either -n e or n. Ze, so equation (7) must be read as fixing the mass density p: 
e 1 

B2/8~pc 2 = (i/4)(~g/~)>> l. (8) 

The point is that the Coulomb force is so strong that the charge distribution re- 

quired to kill off ~II has a very small associated mass. Again in a normal non- 

relativistic plasma the magnitude of the "convection current" Pe~due to the bulk 

motion of a gas with the net charge density (6) usually makes a negligible contribu- 

tion to the total current, which is due primarily to the relative motion of ions and 

electrons. Thus, for example, with v=C~ , the velocity of corotation, 

4~ 1PeVl/c I VxB_l -- [ ¢4".,'c) ¢~ /2" ,c )  ¢ ~ / c )  ¢c~,'~) ] / [ I VxB_ ¢,~,"~) ] 

= 2 (M/c) 21[ iVxB_i (~/B) ] ; (9) 

and if IVx~i=B/~ this ratio =(e~/c) 2 , which is small in non-relativistic domains. 

In fact, as long as terms of order (v/c)2 are dropped (e.g. if the Galilean rather 

than the Lorentz transformation is used) then one is for consistency compelled to 

drop terms such as the convection current, and likewise to ignore the electric force 

density pe ~ compared with the magnetic force~density ~xB/c in the bulk equation of 

motion. But in a charge-separated domain the convection current is the total curr- 

ent, and one must use equation (9) to deduce that 

~IVx~ilB = o(~/c) ~ <<l (10) 

as long as c~<<c. This in fact justifies our implicit neglect near the star of the 

VxBterm in Pe; however, near the light-cylinder radius ~c = c/@ the rotation of 

the Goldreich-Julian charges will seriously distort the magnetospheric field from the 

curl-free extension of the star's dipolar field [12,13]. Equally, there is now no 

mutual cancellation of most of the Coulomb fields due respectively to the electrons 

and ions: rather, the G-J model requires that the electric and magnetic force densi- 

ties nearly balance within each domain. 
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Similar arguments apply to the non-aligned problem [14,15], except that there 

is now a displacement current term. In order of magnitude 

[ (llc)~E/~t I -~ (S/c) (0uDBIc) = (0~01c) 2 (B/e) , (ll) 

which is of the same order as 4~QeV/C: the displacement and material currents are 

of the same order, yielding comparably significant deviations from the VxB = 0 app- 

roximation as the light-cylinder is approached. We should therefore expect the rot- 

ating charges to modify the structure of the Deutsch-Pacini wave (cf. Section VI 

below). 

II THE G-J MODEL AND ITS PROPOSED MODIFICATION 

Within the light-cylinder (from now on abbreviated to "l.-c.")defined by the 

axial distance 

e = c/~ (12) 
c 

the magnitude of the co-rotation electric field (2) is less than ~, so that its 

immediate effect on charges is to give them the drift c~xB/B 2 , i.e. to set them 

into corotation. The toroidal currents due to the corotation of the charge-separated 

"plasma" modify the magnetospheric magnetic field according to 

VxB = (4z/C)QeC~Dt, (13) 

so that the charge-density (6) now becomes 

Pe (l-e2x2/c2) = - (~/2~c) (B.k_) . (14) 

We shall comment on the magnetospheric field structure below; herewe note that the 

electron and ion zones are separated by the line B.k = 0 where the magnetic field is 

perpendicular to the rotation axis (cf. Fig. i). 

Co-rotation is a possible and plausible resolution in the domain where field 

lines close within the l.-c. (though one should also note the possibility of finite 

gaps separating ionic and electronic regions, with a mutual differential rotation 

[16] . Field-lines emanating from the polar caps will inevitably reach and cross 

the l.-c., so that magnetically-enforced co-rotation would yield super-luminal veloc- 

ities. However, the electric field (2) does not require a pure co-rotation velocity 

for the particles: any velocity of the form 

v = KB + o~t (15) 
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with K a scalar, satisfies 

E + vxB/c = 0 (16) 

and so is also consistent with the"plasma condition" (4) and with (2). One can rea- 

sonably argue that if the components of inertia along the field are negligibly small, 

then so also are the trans-field components, implying (16) as a generalization of 

(2). The velocity field (15) with flow along the field superposed on the co-rotation 

velocity is familiar from studies of solar and stellar winds (e.g. [17]). Consider- 

ing for definiteness the northern hemisphere, the current associated with an outward 

electron poloidal flow v = KB generates a toroidal field pointing in the -t direc- 

tion; the associated velocity ~t = <~ reduces the total toroidal velocity below 0~D , 

and so offers the possibility of keeping the total Velocity below c. A necessary 

corollary for a steady state is an associated ion current in a collar surrounding 

the polar domain that emits the electron wind. Thus the model predicts energy and 

angular momentum loss from the aligned rotator. The field-lines beyond the l.-c. 

are constrained by the condition (15) to follow the wind: they cannot therefore 

cross the equator and close, but extend to infinity. 

There are several difficulties with this model (some already explicit in the 

Goldreich-Julian paper). The most serious is the requirement that the compensating 

ion current flow through a region for which equation (6) still requires a negative 

Pe" The G-J paper suggested that the ions flow through a co-rotating cloud of elec- 

trons, but this expedient would not survive the introduction of finite non-electro- 

magnetic forces. The most natural resolution of this was pointed out by Jackson 

[18,19] . A constant charge on the pulsar can be maintained if the outflowing elec- 

trons are balanced by an inflow: the positive current consists of inflowing electrons 

which have managed to cross the magnetic field-lines far from the star. This would 

not be possible if the particle flow obeys (15) everywhere, but this constraint comes 

from the condition (4) which though a plausible approximation within the 1.-c., is 

far less justifiable at and beyond the l.-c., where relativistic inertial force and 

radiation damping become important. Thus the G-J electronic and ionic winds are re- 

placed by an electron circulation. 

The analogy with the solar wind is in fact partly misleading, for there it is 

the dominance of the non-magnetic forces over the magnetic force near and beyond the 

Alfvenic surface which Justifies the picture of a thermal wind blowing in spite of 

the presence of magnetic energy (cf. [17]). In the present problem the wind is 

introduced not on dynamical grounds, but as an attempt to satisfy the kinematic re- 

quirement v< c; and it is the constraint (15) that then requires the field-lines 

to follow the flow to infinity. As soon as the '~ lasma condition" (4) is relaxed, 

particles are free to flow across poloidal field-lines, which can now relax into the 
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more natural structure in which they close beyond the l.-c. as well as within it, 

while outflowing particles can drift equator-wards to form ultimately the required 

inflowing current. 

The modified picture is as in Fig. i. The aligned model is still supposed to 

lose energy and angular momentum but not through a wind to infinity, but by radiation 

from the circulating electron gas. Some of the features of the G-J picture are re- 

tained; in particular, the non-corotational electric field is still assumed small 

until near the l.-c. This requires that the electrons leave the star with velocit- 

ies well below ~, and that the whole electron circulation zone within the l.-c. does 

not penetrate far into the "naturally positive" regions where B < O (cf. (14)). 
z 

The domain A with field-lines closing within the l.-c. again co-rotates; so also does 

the electron zone DI, and the ion zone D 2 separated from the l.-c. by a small but 

finite gap D 3 . Analysis of the electron flow (Mestel, Phillips and Wang [20] - from 

now on referred to as MPW) shows that if dissipation is ignored, the outflowing elec- 

trons must reach infinite values of their relativistic energy 7mc 2 a little way be- 

yond the l.-c.. This is taken as a reductio ad absurdum: in reality the relativ- 

istic particles will radiate incoherently, primarily in the direction of their motion, 

so suffering a drift through the dissipation domain towards lower latitudes, where 

they form the return current. To get a sensible drift across the field the radiated 

power must be sufficiently high, and this in turn requires the emission to be in the 

gamma-ray part of the spectrum. 

The motion of the particles in the dissipation domain is provisionally assumed 

to be nearly toroidal, with the poloidal velocities well below ~, so that the highly 

beamed radiation is primarily in the toroidal direction. This links up with a neces- 

sary constraint on the model, emphasised by Gold [21], Cohen and Treves [22] and by 

Holloway [23] . Both the energy and angular momentum lost from the system are sup- 

plied by the central rotating body, with moment of inertia I; hence it follows that 

Energy loss/sec = -(d/dt) (I~2/2) =-~ (d/dt) (I~) (17) 

= e x(Angular momentum loss/sec). 

This relation imposes an integral constraint which must be satisfied. An individual 

photon emitted in the toroidal direction at an axial distance ~ carries energy h~ 

and angular momentum ~h~/c; if it were forced to satisfy the constraint (17), then 

its "lever-arm" ~ must be c/~ light-cylinder emission. 

I do not wish to be misunderstood here: I am not arguing against polar cap 

models and for l.-c. emission of the radio, optical X- or gamma-ray emission from 
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pulsars. The condition (17) is an integral relation, which must be satisfied by the 

sum total of the radiation emitted (including the low-frequency wave from oblique 

pulsars), but no conclusion can be drawn about the source of e.g. the radio pulses, 

which as already noted make up a very small fraction of the total energy loss. What 

can be said is that any emission from e.g. the polar caps must be balanced by a comp- 

ensating emission in some wave-band beyond the l.-c. [23]. For the present model it 

is satisfactory to note that there is no prima facie difficulty about satisfying this 

condition, since the emission is supposed all to occur near the l.-c. and to come 

from particles with a dominantly toroidal motion. 

III ESSENTIALS OF THE MATHEMATICAL ANALYSIS FOR THE NON-DISSIPATIVE DOMAINS 

Much of the following analysis will be found in different notations in the 

literature (as well as in unpublished material). Besides MPW, papers of special 

relevance are published in [12,24-32]. 

Consider first Maxwell's equations for a steady axisymmetric system. The 

basic poloidal magnetic field is written in terms of a Stokes stream function [: in 

cylindrical polars (~,¢,z) 

B =-~Tx(Pt__/e) =-VPxt__/~ = (e-l~P/~z,O,~-1~P/~). (18) --p 

The electric field E is again conveniently broken up into the co-rotation 

field (2) and the rest: 

whence 

-V# = E = -0~Dt x B /c - V$ (19) 

= -~P/c + ~ . (2o) 

Inside the star $ = O, and the non-vanishing of $ outside the star is linked with 

the non-coincidence of the equipotentials and the poloidal field-lines. 

The Poisson-Maxwell equation in an electron domain yields 

4WPe = -4Vnee = -V2~ = -V2~ + (~/c)V2P 

and the toroidal components of the Ampere-Maxwell equation 

(21) 

(4ZPe/C)~e~= Vx% = (e-IV2P + 2B /e)t 
z 

where ~ is the local angular velocity; whence 

(22) 



156 

4~Pe [ 1 - (me/c) (0~Ic)] = -2~Bz/C - V25 (23) 

and 

V2P [I - (~/c) (~/c)] = -2B 
z 

(24) 

If the poloidal flow of the electrons is described by its stream function ~, 

= -nev = VSxt/~ , --p (25) 

then the poloidal components of the Ampere-Maxwell equation yield 

~B t = (4~/c)S (26) 

with the zero of S taken conveniently on the axis ~ = O. 

Consider now the steady flow of a cold, dissipation-free electron gas. The 

energy and angular momentum integrals are immediate: 

7mc 2 - e~ = F(S) (27) 

and 

7m~ 2 + eP/c = G(S) . (28) 

As we are primarily interested in conditions far from the star, we have dropped from 

(27) the gravitational term, which can however easily be introduced. The second term 

in (28) derives from the magnetic torque -e~(v x B )/c (in a steady axisymmetric -p -~ 

problem there is no electrical torque). Equations (27) and (28) combine into 

F--7[I- (~/c) (0~/c) ] - e~/mc 2 (29) 

= constant on streamlines. 

The term y~c~2/c 2 is the relativistic form of the centrifugal sling-shot in a perfect 

conductor [33] . Gas which is nearly co-rotating with the star gains angular momen- 

tum as it moves out from the magnetic torque, which depends on a non-zero angle bet- 

ween ~ and ~. The lines of ~ and [ do not therefore coincide exactly: electrons 

suffer a slight "inertial drift" to a neighbouring field-line at a different co- 

rotational potential -~P/c, and so acquire electrical energy which supplies in fact 

more than the extra kinetic energy of rotation, the rest being available to drive the 
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wind. In the present problem the potential includes the non-corotational part ~, 

which is found to act so as to moderate the sling-shot. 

The constant in (29) is fixed for the outflow domain by boundary conditions at 

the stellar surface. With our assumptions of non-relativistic emission, the constant 

would be unity; when account is taken of the gravitational potential of the star, this 

is replaced by =0.9. It can be shown (cf. Section IV below) that the same value holds 

for the inflow domain. 

The equation of motion can be written concisely as 

where 

v x ~Ic - vf, (30) 

= B - (cm/e)Vx(yx), (31) 

= ~ - (mc2/e)y. (32) 

As ~ is divergence-free and ~ slngle-valued, (30) has solutions analogous to (15) 

Z = KB_+ ~t;_ _vp = KB_p, ~l~ = I + ~tle (33) 

Equations (27) and (28) are immediate consequences of (30) - (32), and continuity 

relates nK to the function G(S) in (28): 

c n< dG/dS = i. (34) 

Thus the effect of inertia on the geometry of the motion is simply included by the 

replacement of B by the modification B. The deviation of v from B is in fact often 

small until both y and IVTl are large. At least for the rapidly rotating pulsars, 

it is a good approximation to use (15) for the geometry of the flow until IVyl be- 

comes so large that the particles are in any case approaching rapidly y-values for 

which dlssapation takes over. I emphasize that this is not equivalent to ignoring 

inertia. The joint energy-angular momentum integral (29) is crucial for the theory; 

but it is not inconsistent to retain this, while e.g. relating y to velocities which 

are adequately described by (15) rather than by (32). 

The discussion bifurcates at this point. We are explicitly looking for a sol- 

ution in which the deviations from the G-J model do not become serious until near and 

beyond the l.-c. The non-co-rotatlonal potential ~ is always there, given by equation 

(29), but its contribution through 72~ to equations (23) and (24) is small until very 



158 

near the l.-c. It is also assumed (and subsequently confirmed) that even in the 

circulation zone the poloidal velocities and so also departures from co-rotation are 

very small within the l.-c. Thus provided the gap between the ion zone and the l.-c. 

is thin, the magnetic stream function P satisfies to a high approximation the Pryce- 

Michel equation, found by putting ~/~ = 1 and dropping the 725 term in (24): 

V2p(I - ~2e2/c2) = (2/~)~P/~ (35) 

[30,12,13], with the boundary condition B ~P/~e = 0 holding just within the l.-c. 
z 

One has therefore a well-defined field-structure within the l.-c. which can then be 

used for studying the dynamics of the out- and instreaming electrons. 

Detailed analysis of the properties of the dissipation-free flow is presented 

elsewhere (MPW; and [34] ). The essentials are as follows. 

(I) Iv_~/c I increases outwards from the star to the l.-c. This is because 

Bz,and QeVp/Bp = constant along a streamline, by continuity; hence Vp ~ Bp/B z 
Pe 
and this increases because of the Shape of the field-lines in the aligned case. 

Thus near the star the flow is markedly sub-luminal, and we expect a current 

and so an energy loss well below the maximum estimates, which assume (Vp/C)R=l 

(cf. Section IV below). 

(2) The boundary layer in which the V25 term is important is very thin. Like- 

wise, the allowed values of B near the l.-c., though not strictly zero, are 
z 

small enough amply to justify our using B = 0 as a boundary condition for a 
z 

zero-order construction of the field; and so far, all cases studied in detail 

have v /c << 1 near the l.-c. also. 

(3) Because (vp/c) 2 << i, dissipation-free outflow breaks down a short dist- 

ance beyond the l.-c. by ~ becoming infinite. As already noted, this is taken 

as an indication that radiation damping becomes important and alters the nat- 

ure of the flow. Dissipation-free inflow starts at a small but finite dist- 

ance within the l.-c. 

(4) The non-co-rotational electric field acts inwards; in the outflow domain 

it reduces the centrifugal sling-shot; in the inflow domain it overcomes it. 

The current emerging from and returning to the star is essentially a G-J elec- 

tron density moving at a speed much below ~. The contribution to Qe of the V2~ term 

is found to be small. One can study general "space-charge limited" flows in which 

the current emerging from the star is a free parameter [35,36]. If this current is 

supposed much larger than that found in the present model, then assumptions of neg- 

ligible V2~ and of non-relativistic flow near the star will certainly break down. 

Further, Scharlemann et al. [36] show that with the field-lines curving away from 

the rotation axis, as in the axisy~etric case, it is in fact not possible to get a 

self-consistent flow startingwith v ~ c near the star; the only allowed cases 
P 
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(apart from Vp = O) are those with vp/c << 1 near the star, and increasing outwards 

through the Bz/B p effect. We return briefly to this question in Section VI on the 

non-aligned case. For the moment, we note that one cannot expect to construct a com- 

plete model, and in particular determine the strength of the currents leaving and re- 

turning to the star, without studying the electromagnetic and flow fields near and 

beyond the l.-c. Equally, conclusions may be strongly geometry-dependent: a very 

different picture may result for the highly oblique cases as compared with the ali- 

gned or nearly aligned cases. 

IV THE DISSIPATION DOMAIN 

Once the particles acquire sufficiently high T-values, the neglect of radia- 

tion losses is no longer legitimate. The simplest way of deriving the associated 

frictional drag on the electron gas is to make a Lorentz transformation to the frame 

in which the electrons are instantaneously at rest. In this frame the power radiated 

is unbeamed, so there is no corresponding momentum loss. On transforming back to the 

stationary frame one finds the well-known result that the power P is an invariant, 

and that there is an associateddrag -Pv_/c 2 on a velocity ~. If the particle veloc- 

ity remains primarily in the toroidal direction, then the centripetal acceleration 

is nearly perpendicular to the velocity, and the power P takes the familiar form, in 

terms of the relativistic momentum ~, 

and since 

(2e2/3m2c3)T2(dpu/dt)2 ; 

I dpJdt I ~ I~K--X~I =~T mc' 

(36) 

this becomes 

(2e2/3c) (~/~) 2 7~ 2. 

The energy and angular momentum equations (27) and (28) are now replaced by 

(37) 

V.V (%/mc 2 - e(~) = -p (38) 

and 

v.V(Tm~ 2 + eP/c) ~ -(~2/c2)p. 

The quality F defined in (29) is no longer constant on streamlines: 

(39) 

V.~TF = -(iP/mo 2) [I - (Q/e) (o~/c)2]. (40) 

Equation (39) shows explicitly how the radiation damping term enforces a drift across 

the lines of the field B (cf. (31) and (18). The value of T required to yield -p 
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a sensible drift is given roughly by 

~/~ = ¢%/~) (Vp/C) [(c/~)/(e2/mc2)] , (41) 

where ~g is again a local Larmor gyration radius. Since ~g/~ is very large, and the 

square bracket is the ratio between the light-cylinder radius and the classical elec- 

tron radius, equation (41) predicts very high ~ values even for Vp/C much below unity. 

The highly beamed radiation has frequencies =y3e , with photon energies as high as 

l~ mc 2 - right up in the gamma-ray region. It is possibly significant that the 

first cos B measurements [37] do indicate that some gamma-ray sources are emitting 

this energy range. 

It is instructive to write down explicitly the form taken by the energy- 

angular momentum relation (17): 

f n P[I - (~/~) (O~0/c)2]dV = 0 (42) 
all space 

(It is re-emphasized that this is not an additional constraint imposed on the system, 

but one that must be satisfied identically by any solution to our quasi-static prob- 

lem.) An immediate consequence of (42) is that particles leaving the star with non- 

relativistic speeds also return with y = i, having radiated away near the light- 

cylinder energy and angular momentum picked up from the star via the electromagnetic 

fields. Electrons at different latitudes on the star find themselves at different 

electric potentials, because of the rotation of the star in its magnetic field. They 

are prevented from flowing from higher to lower latitudes by the presence of the 

field, but are pulled outwards, initially by the weak electric field ~II required 

to overcome gravity, and later by the centrifugal force moderated by ~II The sys- 

tem is self-adjusting, in the sense that in the dissipation domain electrons are 

allowed to acquire the y-values sufficient for radiation damping to yield the re- 

quired trans-field drift that enables them to join the return flow to the star, 

which they reach with non-relativistic speeds. The total power can be estimated 

either directly from the dissipation, or by noting that a current density (PeVp)R , 

flowing across an area defined roughly by the last field-line P = P* to reach the 

l.-c. goes down a potential drop = ~P*/c, so yielding energy per second 

(43) 

where @* is the polar angle where p* leaves the star. Although the magnetospheric 

currents cause the field to deviate from the curl-free, dipolar form, the relation 

@,2 = eR/c is still valid, with IP*I = BsR'~/c [12,13]. With l~el = ~Bs/2~c the 

power (43) becomes 
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B 2 R6@~/c s (44) (vp/ c) R s 

Comparing this with expression (I) for a vacuum oblique rotator, we see that since 

vp/c is estimated to be at most 10 -2 , the aligned model loses energy and angular mom- 

entum at a much slower rate than the highly oblique model. (We anticipate that the 

plasma will not alter the order of magnitude of the estimate (I)). 

V CONSTRUCTION OF A FULLY SELF-CONSISTENT AXISYMMETRIC MODEL 

We have seen that the reason why there is a magnetospheric problem at all is be- 

cause of the failure of the vacuum model to satisfy the dynamical boundary condition 

at the stellar surface. Likewise, any other model, including the one discussed above, 

stands or falls by similar criteria: nothing is gained if the G-J difficulties are 

merely transferred from the star to near the l.-c. As the structure of the magnetic 

field enters so sensitively into this problem, especially through the sign of B (cf. 
--z 

(23)), it is desirable to start the inevitable iterative scheme with as good an app- 

roximation as possible to the structure of B. As already noted, within the l.-c., 

the Pryce-Michel equation (35) with the natural boundary condition B = 0 on the 
z 

l.-c. is likely to yield an adequate model [12], provided the method of solution is 

modified to satisfy the synmletry condition ~ = O on the equator [13]. In the dis- 

cussion in MPW and in [13], it was conjectured that the dissipation domain formed a 

very thin sheet near the l.-c.. The magnetic field beyond the l.-c ~. was therefore 

completed by a curl-free structure, continuous in ~ with that within the l.-c., but 

with a discontinuity B at the electron domain: for the circulating electrons will 
--z 

form also a toroidal current-sheet because of their near co-rotation. Subsequent 

work showed that the dissipation zone must in fact spread out. This is because the 

return of the electrons towards the star is enforced by the electric field due to a 

net positive charge within the l.-o., concentrated near the vacuum gap separating the 

co-rotating ion zone from the l.-c. If the circulating electrons were concentrated 

into a thin sheet, their mutual repulsion would dominate over the long-range attract- 

ion of the positive charges. 

This makes the problem considerably harder, as one now has to construct a vol- 

ume density field 0e within the dissipation domain, related by equations (23) and 

(24) to the P and $ fields, and to the velocity field by continuity and the dissipa- 

tive dynamical equations, which must almost certainly include the poloidal as well as 

the toroidal components of the radiation drag. The non-corotational electric poten- 

tial ~ must behave properly at infinity, and be continuous along with its normal der- 

ivative at the junctions with the dissipation-free circulation zones and the co- 

rotation zones. The task is formidable, but the vindication of the model, with also 

reliable estimates for the strength of the circulating currents and the associated 

power radiated, depends on successful numerical work. 
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The only obvious alternative possibility for the aligned case is a model with- 

out any circulation or radiation, in which the elctrons as well as the ions are con- 

fined to toroidal motion about the star (see e.g. [38,39,36,28]). It has been shown 

by Pilipp [40] that, if ~ is given identically by the co-rotational (zero inertia) 

value (2) throughout the space-charge region and there are no vacuum gaps within it, 

then the charges cannot be confined inside the light-cylinder and a static configura- 

tion cannot exist. At the present time it is not clear whether the inclusion of 

(possiblyvery wide) gaps within the magnetosphere and/or the effect of finite iner- 

tia near the light-cylinder will alter this conclusion. Again only detailed const- 

ruction of the P and $ fields, with special concern for the conditions on the bound- 

aries (of shape to be determined) can decide whether such a model is viable, or whe- 

ther inevitably unbalanced electromagnetic stresseswill set up the circulation dis- 

cussedabove. The practical difference between these two pictures of the aligned 

rotator is that in one the power is finite and perhaps observable in the gamma-ray 

part of the spectrum, though at least two orders of magnitude below the maximum ob- 

lique rotator estimate (i), whereas in the other the aligned rotator shuts off al- 

together. Whatever the answer, the above analysis for the axisynunetric case is a 

prelude towards our understanding of the charged magnetosphere in the oblique case, 

to which we now turn. 

VI THE OBLIQUE ROTATOR 

For definiteness and simplicity, we shall continue to suppose the field frozen 

into the pulsar to have a basic dipolar angular distribution with respect to its axis 

along ~. For non-axisymmetric systems in general, the analogue of the steady axis- 

ymmetric problem is the case described as "quasi-steady" or "steady in the rotating 

frame", satisfying 

~/~t = - o~a/a¢ (45) 

in the inertial frame (~ being the usual azimuthal angle). The operator equivalence 

(45) can be applied to scalars and to cylindrical or spherical polar vector compon- 

ents, [15,241; it merely implies that changes in time at fixed spatial points are due 

to the rotation at the rate ~ of a non-axisymmetric structure. It is far simpler to 

use (45) in the inertial frame than to transform to a frame rotating with the pulsar. 

Such a transformation is in any case illicit beyond the l.-c., as it would lead to 

imaginary proper-time; and even within the l.-c. Maxwell's equations written in terms 

of a rotating co-ordinate system take on a much more ~omplicated form [41], for which 

the possibility of dropping time-derivatives is inadequate compensation. Use of (45) 

in no way implies any G prio~ claim as to how an individual particle moves; all that 

is asserted is that there exists a pGtte1~n which is swung round at the rate ~. In 

the special case of axial symmetry, ~/~ = 0 implies 8/~t = O. 



163 

With the constraint (45), Faraday's law of induction again implies 

E_=- ~(_~r o x~Jc- v~ (46) 

[ 15], where ~ is related to the familiar electromagnetic potentials ~ and ~ by 

--~ - ~/c (47) 

[24]. To determine ~ for any domain we need more physical information. ~qthin the 

perfectly conducting star, again $= O. The Deutsch-Pacini vacuum wave model fixes 

by requiring that Pe and ~ should vanish outside the star. We again start at the 

other extreme by provisionally imposing the G-J condition (4), which again leads to 

the zero value for ~ being propagated from the star along the field-lines, and to 

the charge density (6) [15,14]. The smallness of the minimum associated mass-density 

(cf. (8)) again encourages the study, as a first approximation, of the "perfectly 

conducting, force-free", charge-separated magnetosphere, in which the particle mot- 

ions consist of co-rotation together with flow along field-lines. Equation (15) 

when multiplies e.g. by Pe = -ne for an electron domain yields 

j - OeC~Dt - = (c/4~) IB (48) 

where the scalar 

I = (4~/C) (-neK) (49) 

is constant along field lines. Substitution into the Ampere-Maxwell and Poisson- 

Maxwell equations with the quasi-steady constraint (45)imposed yields the "relativ- 

istic force-free" equation 

v x E = ~ (5o) 

where 

= {Bm(l - ~2~2/C2), B~, Bz(I - U2X2/c2)} (51) 

in cylindrical polars [42,43]. The modified field ~includes the effects of co- 

rotation of the charge-density (6) and of the displacement current, while lB_repre- 

sents the flow of current along field-lines. (The charge-separation condition is 

in fact not necessary for the derivation, as long as mutually streaming positive and 

negative gases are supposed to interactpurely through the large-scale electromag- 

netic forces). If axial symmetry is imposed, then (50) and (51) are equivalent to 
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the zero-inertia limit of the equations of Section III. It can be verified that 

equations (22) and (23) with the Vz~ term dropped, equations (26), (28) and (34) 

with ~ now a function of ~, and ~/@ given by (33) with the tilde removed combine to 

yield the axisymmetric form of (50). 

As in the aligned case, the justification for the simple plasma condition (4) 

becomes more and more doubtful as the l.-c. is approached. Even so, it is of inter- 

est to see what solutions of the equations (50) and (51) are allowed if they are sup- 

posed valid over the whole of space outside the pulsar. The few cases studied all 

reinforce one's expectation that the dropping everywhere of the non-electromagnetic 

forces and of the non-corotational potential leads to unacceptable conclusions. The 

simplest illustrative example is the "cylindrical pulsar", with all quantities sup- 

posed independent of displacement parallel to the rotation axis k and with the rotat- 

ing "pulsar" field consisting of a two-dimensional dipole aligned perpendicular to k 

and a prescribed ~-dependent component B [42,44,32] . Equation (50) then predicts 
z 

a zero Poynting flux across the l.-c.: apparently the G-J space charge associated 

with the B -component has killed off the two-dimensional analogue of the Deutsch- --z 

Pacini vacuum wave discussed by Kahn [45]. However, closer inspection shows that 

this solution depends on there being a reflector at infinity: the vanishing energy 

propogation between the 1.-c. and infinity is not due to a material current cancel- 

ling the displacement current, but through a standing wave consisting of one out- 

going and one ingoing wave. This is ~ O t ~ O  a~ G]98U~dUm: with a Sommerfeld bound- 

ary condition at infinity, we deduce that one or more approximations built into equa- 

tion (50) must give. Similar conclusions emerged from study of modes which are per- 

iodic in the z-direction. Mathematically the paradoxes are associated with the l.-c.'s 

being a singularity of the differential equations (50), and this is due to the strict 

imposition of condition (4). Once this is relaxed, then there is no objection to the 

construction of propagating wave solutions to infinity which are non-singular at the 

light-cylinder [32]. 

Equation (50) remains a plausible approximate description of the field well 

within the l.-c., at least for models with small obliquity X, where the field struc- 

ture should not differ too much from the strictly aligned case. We have seen that 

beyond the l.-c. the appropriate solution is an outward propagating, plasma-modified 

wave. The energy it carries to infinity must reach the l.-c. from the star; this is 

achieved through the term l~in (50), representing current flow along the field-lines. 

If on the contrary we set I = 0, then (50) reduces to 

[B~(I - ~2e2/c2), B~, BZ(I - ~2~2/c2)] 

- -  (aK/ae, m-lai~a~b, aK/az) (52) 
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where K is a scalar. On the l.-c. ~K/~ z vanishes, and B~ would then have to be in- 

dependent of ~; but as B~ must vanish as Izl + ~, we conclude that B~ would have to 

be zero. The Poynting vector has a m-component c(E~B z - EzB~)/4~ , and this then 

vanishes at the l.-c. (the plasma condition (4) requires E~ = 0 everywhere). Thus 

although equation (50) includes the effect of the displacement current in ? x ~, but 

with the ~IL component supposed shorted out, it is only through the flow of current 

l~along the field-lines that energy reaches the l.-c. 

As the next stage in the argument, we study in more detail the flow of the gas 

making up the currents from the pulsar to the l.-c., still supposing the flow to be 

dissipation-free. Endean [24] pointed out that the equations to the quasi-steady 

flow of a cold, non-dissipative gas of electrons or ions have a Jacobi integral iden- 

tical in form to the joint energy-angular momentum integral (29) for the axisymmetric 

system: in particular, for an electron gas 

r - 7(1 - (M/c)(~m/c)) - e$/mc 2 (53) 

= constant on streamlines. 

One can then write the equations of motion for the electrons in the form 

U X [V X (p - eA_/c)] = mc2VF (54) 

where u E v - 0~, (55) 

is the vector potential of the magnetic field, and ~ = ~m~ is the relativistic mom- 

entum [31]. The value of F for outstreaming particles is fixed by boundary conditions 

on the pulsar surface. Particles leave the star, where ~ = 0, with low velocities; 

and even in cases where there is rapid acceleration to relativistic speeds near the 

star [36], this will be through the action of the self-consistently constructed ~- 

field. Thus we may expect F to be nearly uniform from one out-streamline to another, 

so that (54) can be replaced by 

u = ~(B- (c/e)V x P_) = KB_ : (56) 

after subtraction of the corotation velocity, the particles move along the lines of 

the vector ~ (cf. (33)). Just as for the axisynmletric case, the inertial correction 

to flow along the field will be small until y and IVTI are large; again the effects 

of inertia are retained in the integral (53), but the geometry of the flow will be 

well represented by 

u ~ <B (57) 
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except when y is increasing so fast that the particles are in any case approaching 

a regime in which dissipation is a dominant feature rather than just a perturbation. 

The integral (53) is now written as 

y [1 - x 2 - xu¢/c]  = ~ (58) 

where 0uD/c = x, ~0~/c = u~c + x from (55), and 

= e~/mc 2 +F , (59) 
o 

where F is the constant value fixed at the pulsar surface (= 0.9 if account is taken 
o 

of the gravitational potential). Then on substitution of (55) and (57) into the def- 

inition of Y, 

where 

1/72 = 1 - x 2 - 2xu~/c - (u¢/c)2(1 + ~) (60) 

U = (B 2 + B2)/B~ . (61) 

Equations (58) and (60) combine to yield 

y-~ [ i  + ( l+n)~2/x  2] 

( [ l +  n(1-x')JE1 + ( x ' - l ) ( 1  + 
~ t 

# J 

and 

(xu¢/c) [1 + (l+n)~2/x 2] 

: c1 - x2-~ 2) ; (~ix)2 ([1 + n(1-x2)][1 + (x~-l)(1 + x ~ / ~ ) ] )  ~ . (63) 

Note in  pa r t i cu la r  the respective associat ion ofopposite signs before the rad ica ls  

in (62) and (63). 

The ambiguity of sign for a particular field-streamline is resolved by noting 

that near the star the field structure will be effectively that of a vacuum dipole, 

since both material and displacement currents are small there (cf. (II)). The sign 

of u~ 5 v~ - ~mis therefore fixed by the sense near the star of the dipolar field- 
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line considered, positive if forward-pDinting, negative if backward-pointing, and 

since near the star (x << i) the second term on the right of (63) dominates, the sign 

is unambiguously fixed for each field-line. Thus on a forward-pointing line we take 

the positive sign An (63) and the negative in (62). Then as the l.-c. (x = i) is 

approached from below, i/~ + 0. This effect was first pointed out by Kahn [45]: 

forward-moving particles have a positive velocity u~ added to the co-rotation veloc- 

ity c~D , so they must achieve infinite ~ before reaching the l.-c.. By contrast, on 

a backward-pointing line (negative sign in (63), positive in (62)) lJ> stays finite 

at the l.-c. (unless by chance ~ vanishes there), again understandable in terms of a 

negative u~ being added to 0aD. However, even for backward-pointing field lines, i/~ 

will again vanish if the field-line passes through the point defined by 

x =l+n -I--I+B~/(B~+~z2) . (64) 

Thus along those backward-pointing field-lines with IB~/BI small at x = i, break- 

down in dissipation-free flow will occur a small distance beyond the l.-c.. (This 

result includes as a special case the similar breakdown noted in Section III for the 

axisymmetric case, where however B~ is non-zero only by virtue of the slow poloidal 
I 

circulation which generates a weak toroidal field). Along field-lines which are 

nearly horizontal at the l.-c° -IBm/B[ >> 1 - the particles may never reach the 

point (64), and so they will not enter a dissipative domain unless again ~ vanishes 

on their trajectory, or unless - as is likely - continuous flow along a field-line 

brings charge of a given sign into a domain where the G-J charge density is of the 

opposite sign. 

The conclusion that dissipation-free flow breaks down if it extends too far 

beyond the l.-c. appears therefore to be universal. (Analogous limitations sometimes 

exist for pressure-free, centrifugally-driven flows of perfectly-conducting r~med 

plasmas, for both non-relativistic[46] and relativistic cases [47]). It is tempting 

again to conclude that the system resolves its dilemma by the particles radiating 

very high frequency gamma-photons at a rate sufficient to allow them to break away 

from their original field-lines and drift onto neighbouring lines, so that they can 

be driven back electrically to the pulsar. The qualitative difference from the al- 

igned case is the presence of the low-frequency wave which is also supplied with at 

least part of its energy and angular momentum from the particle currents emanating 

from the star. We have thus arrived at the tentative picture by which in general a 

pulsar is of necessity an emitter of both a strong wave of frequency equal to the 

macroscopic rotation rate, and of gamma-rays near the l.-c.. The characteristic 

pulsar diagnostic symptoms - the coherent radio emission and perhaps also the occas- 

ional X-ray and optical emission - are bonuses, but are not essential, in the sense 

that if the physical mechanisms responsible for them were supposed suppressed, the 
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pulsar would not find itself in a dilemma. By contrast, we have seen that the ex- 

pected emission of the low-frequency wave - enforced by the boundary condition at 

infinity - occurs in spite of the plasma in the magnetosphere, and that the assump- 

tion of disslpation-free magnetospheric current flow seems inexorably to lead to 

infinite y-values, requiring some dissipative process - plausibly gamma-ray emission - 

which occurs efficiently at high particle energies. 

Just as for the aligned case, we need to construct mutually self-consistent 

particle and electromagnetic fields: success is likely to depend on the initial 

choice of a good approximation to the magnetic field structure. Again many of the 

difficulties arise from the very different types of approximation that are appropriate 

in different domains. Far beyond the l.-c. the field is that of an outgoing wave, 

carrying energy and angular momentum to infinity; but its detailed structure must be 

fixed by linking up with the solution further in. It would be a great simplification 

if the field beyond the l.-c. could be described by a vacuum wave all the way to in- 

finity. Our experience with the aligned case suggests that this will not be accurate - 

the dynamical conditions do not allow the dissipation domain to be approximated by a 

£hin sheet. However, it may be reasonable to start the iterative process by adopting 

a vacuum wave model from the l.-c. outwards, and then modifying it appropriately later. 

For small obliquities X, it is reasonable to begin by using equation (50) between the 

pulsar and the l.-c., for we expect the G-J approximations to break down only near the 

l.-c. We would need to impose the essential conditions of continuity of B e , E~ and 

E at the l.-c., but allow for discontinuities in the other components, which would 
z 

correspond to a surface charge-current distribution (o, ~) on the l.-c. - an idea- 

lized representation of the actual volume distribution in the dissipation domain. 

It is amusing to note that one can construct such a global solution with the 

field within the l.-c. satisfying equation (50) but with l= 0. As already noted, the 

Poynting flux from within the l.-c. is then zero, yet the outgoing wave beyond the 

l.-c. carries away energy and angular momentum. The resolution of the paradox comes 

from noting that on the l.-c. -J.E = -J E - is non-zero and positive: the "solution" 
m _  z z 

has smuggled in a bogus set of energy sources on the l.-c. which are supplying the 

wave: realistic solutions must have currents IB from the star to the l.-c. which 

supply the wave from the rotational energy of the star. 

We recall that there remained a query over the aligned problem - whether or not 

the system settled into a state with a steady gamma-ray emission near the l.-c., 

supplied by circulating electrons, or whether it switched off altogether. With X 

small but non-zero, we expect a minimum circulation from the requirement that energy 

and angular momentum be supplied to the low-frequency wave. We may anticipate that 

the energy carried by the wave will remain of the order of the vacuum result (i). 
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Thus whe n X is small, the estimate (44) suggests again that Vp/C is well below unity 

near the star, and that the characteristic G-J approximation - a negligible VEI l 

contribution to Pe and non-relativistic motion until the 1.-c. is approached - 

remain valid. Given that the wave must be supplied with its energy by currents 

flowing to the l.-c., then the dynamical analysis summed up in equations (62), (63) 

and sequel suggests strongly that to complete their circulation these currents must 

cross field-lines U~a the most appropriate dissipative process - gan~a-ray emission. 

And if there remains a finite garmna-emission in the aligned case also, then the theory 

should indeed predict a steady increase in the proportion of energy loss in gamma- 

rays, as the precessional torque causes a steady decrease in the ~bliquity angle and 

so in the energy carried by the wave. 

The nature of the problem may very well change radically when xis not small 

and the energy carried by the wave approaches the maximum. This in itself would de- 

mand that if (44) remained a fair estimate for the energy supply, then (Vp/C) R would 

have to be =l. Further, in the extreme case of a perpendicular rotator, the field- 

lines that reach the l.-c. will again start from near the magnetic poles, where B.k 

is now small, implying from (6) a much smaller G-J charge density than the estimate 

~Bs/2Zc , valid when X is small. Thus when X is large, even if (Vp/C) R =I the G-J 

currents are probably inadequate to supply the energy required by the wave beyond 

the l.-c.. How much energy is in fact carried by the material current and how much 

by the displacement current should emerge from the complete solution. This is indeed 

a crucial point: with a plentiful supply of charges in the pulsar surface, the actual 

current emitted by the star is fixed by a global solution, which takes cognizance of 

the boundary conditions at the l.-c~, and at infinity. Both the value of the current 

and the adjustment to it of the magnetosphere may be very different, according to 

the magnitude of the obliquity X- When X is not small, currents constructed in a 
\ 

self-consistent way may very well require a substantial field - V~ near the star, 

and so lead to relativistic particle generation there as well as near the l.-c.. It 

is known[36] that this is consistent with the variation in ~.~along a field-line in 

a highly oblique case. 

The equations to the magnetospheric structure for large X may differ markedly 

from (50), which depends on terms in ~ being negligible until a thin boundary layer 

near the l.-c. is reached. More significantly, a relativistic current near the star 

will yield further opportunities for radiation, including coherent radio emission 

[48,49]. It is gratifying that global magnetospheric studies, though still in a 

primitive state, are already giving hints as to when one can expect energetic part- 

icles to be generated both at the l.-c. and at the star, so giving hope that ult- 

imately theory will be able to account for the pulsing in all frequencies. 
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ABSTRACT 

Data from the X-ray, radio and optical observations of Circinus X-I are used to 
derive a binary star model for this object. Mass transfer between the primary star 
(Mp ~ 20 MS), and the compact companion star (M c = MS) , most likely a neutron star, 
triggers one or more expanding Eddington luminosity-driven shocks in the vicinity of 
the compact star which in turn produce radio emission. Variable optical emission re- 
sults from the changing Roche lobe surface in the highly eccentric system (e ~ 0.8). 
The X-ray radiation results from the matter in the accretion disk dribbling down on 
to the surface of the compact star. Disk replenishment per orbit (5 x i0 -~ to 5 x 
i0 -I0 MS) occurs near periastron passage. The variation of the X-ray emission is 
caused by absorption of the X-rays in the stellar wind of the primary star. 

I INTRODUCTION 

In this paper we will use the available radio and optical data [1-5], and the 

X-ray data [6-8], to obtain a model accounting for the periodic emission from Cir X- 

i. 

We begin with Section II, in which we summarize the observational data. In Sec- 

III we give the basis of a binary star model for Cir X-I with estimates of the stel- 

lar masses, and derive the dynamical properties of the system. In Section IV we ex- 

plain how, near periastron passage, Eddington luminosity-driven shocks are created 

by mass accreting from the massive star on to the compact star. In Section V we give 

details of the production of synchrotron radiation near these shocks. Other mecha- 

nisms for the generation and absorption of radio emission are also considered. In 

Section VI the X-ray radiation is discussed in terms of an accretion disk model in 

which mass is replenished at each periastron passage of the compact star. The sharp 

cut-off observed each orbit in the X-ray light curves of 1976-77 is attributed to 

absorption in the stellar wind of the massive primary. In Section VII we compare and 

contrast theory with the observations of Cir X-I. 
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Each section of the paper is effectively independent, so that readers interested 

in specific aspects of the problem can omit sections not directly relevant. 

II OBSERVATIONAL DATA 

Fundamental to the model of Cir X-1 is the observed periodicity of 16.595 days 

in the X-ray, radio and optical radiation [9,2]. 

We also have to explain a wide variety of phenomena over a broad spectral range, 

as follows. 

(a) Z-RAEDATA 

£n 1976 the soft X-radiation (3-6 keV) had an abrupt drop (in 50.07 d) every 

period and remained low for ~4 d before gradually rising again [i0,ii] (see Figure i). 

However, the observed drops possibly show phase jitters of ±0.5 d about the time of 

the predicted drops [ii]. The X-ray spectrum changed during the light curve, soft- 

ening during the X-ray pulse and hardening again at the intensity cut-off [12,7]. 

The column density of material of cosmic composition producing the hardening is ~2.5 

1024 -2 x atoms of hydrogen cm Peak X-ray intensities from flare to flare are highly 

variable, frequently reaching an intensity greater than that observed from the Crab 

nebula. 
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the Ariel V All-Sky- 
Monitor. Note the 
sharp drop (shown by 
a dotted line) at X- 
ray cut-off 
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Fig. l(b) A sequence of soft X-ray light curves of Cir X-I as observed in 1974 with 
the Ariel V All-Sky-Monitor. The X-ray pulses show variable amplitude. 
There is a suggestion in the data that the amplitude shown is half of a 
sine wave with nulls at about day 620-640 and day 790-830 
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16.595-d period. Note the persistence of the sharp X-ray cut-off and the 
suggestion of temporal variability prior to cut-off in the X-ray amplitude 
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(b ) OPTICAL DATA 

Cir X-I is associated with a red star showing remarkably strong Ha and He emis- 

sion lines [i]. The optical spectrum has no strong absorption features apart from 

interstellar lines and cannot be from a late-type star (Figure 2). Optical flaring 

associated with the X-ray cut-off is greater than 0.57 mag in the R-band. Glass [3,4] 

has observed a saw-tooth light curve for Cir X-I in the near infra-red (JHKL) (Figure 

3) with a steep rise near the X-ray cut-off followed by a steady decline (See also 

Figure 4). 
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Fig. 2. Optical spectrum of Cir X-I. The strong hydrogen and helium lines in emis- 
sion, the absence of metal lines, and the continuum increase towards the red 
end of the spectrum can be used to argue for an early-type star at a large 
(~i0 kpc) distance 

Interstellar features in the optical spectrum are strong and their correlation 

with reddening gives EB_ V ~ 3.5 mag. Reddening estimates in the direction of Cir X-I 
-i 

are ~0.8 mag kpc [ 13], giving a minimum estimate of distance to the object of 4 kpc 

and thus yielding an absolute magnitude of M V = -4 to -5, with large uncertainty. 

Strong reddening, and this absolute magnitude, are consistent with the assumption that 

the observed red continuum arises from an early-type star. 
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(e) RADIO DATA 

From [14,15,1,2] the following radio characteristics of Cir X-i are known. 

(a) There is a radio source with angular diameter <40" arc coincident in position 

with the emission line star. 

(b) This point source lies on an extended region of radio emission centred ~i' are 

to the south; Cir X-I may also be associated with the supernova remnant G321.9. 

0.3, 25' arc to the south. 

(c) The radio flare, which may be multi-peaked, always occurs after the X-ray cut- 

off (see Figure 4). 

(d) When the radio source is quiescent the spectrum is non-thermal and well des- 

cribed by S ~ V~ (~ = -0.5). The quiescent 5 GHz flux density typically is 

-0.3 Jy but during flares the intensity may increase by an order of magnitude. 

(e) Peak flare intensities reached at any one observing frequency differ markedly 

from one 16-d cycle to another. 

(f) Neutral hydrogen absorption measurements indicate that Cir X-I is at 8 to 16 

kpc. This estimate is likely to be more reliable than one obtained by inter- 

stellar reddening estimates. The SNR G321.9-0.3 is at a distance of 5 to 9 

kpc [14] (Figures 5,6). We adopt henceforth i0 kpc as a nominal distance. 
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Fig. 5. Map of the supernova rem- 
nant G321.9-0.3 made at 408 
MHz with the Molonglo radio 
telescope (half-power beam- 
width, HPBW, as shown). 
The contour unit of bright- 
ness temperature averaged 
over the beam solid angle 
is 23.8 K (corresponding to 
0.i Jy for a point source) 
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Fig. 6. Fleurs radio synthesis map of the Cir X-1 region 

(g) Short-term variability in flares at 14 GHz puts an upper limit on the size, d, 

of the emitting components in the source region of d ~ i00 AU. 

(h) On the basis of this linear size, a distance i = i0 kpc and peak flare inten- 

sity of S ~ 2 Jy in 21 cm ~ ~ ~ 2 cm wavelength, the radio brightness tempera- 

ture, TB, is ~(~/2 cm) 2 x 105 K. 

Later we shall argue for emission region sizes of d ~ 10 -2 to i0 -I AU on the 

i0 II basis of the inferred dynamics of Cir X-l, implying a higher T B of ~4 x 

to 4 x 1015 K in about 21 cm ~ ~ ~ 2 cm. 

(i) The time lag At from X-ray cut-off to the first peak of the radio emission at 

a particular frequency increases with decreasing observing frequency ~. The 

relation At ~ -m, where m = 0.8±0.1, satisfies the data. At 14 GHz, At ~ 7 

to 8 h (Figure 7). 

(j) The intensity of first maxima in flares at 5 and 8 GHz seen by Haynes et al. 

[2] on 1977 May 13 follows a relationship of the form S ~ i. 
max 

(k) In the steep part of the radio flare spectrum the flux density is S~ ~ 5/2 _ 

indicative of an optically thick synchrotron emitter with a power-law distri- 

bution of electron energy. Optical depth unity occurs around 1 GHz during 

the radio flaring stage. 

(i) Flares observed at any one frequency decay roughly exponentially with time 

(at 5 GHz decay time is ~30 to 40 h). 



179 

0 

1"8 

C 

"13 

LL 

, , i , I I I I I , i I I I I I I i i 

Observat ions 

+ 1 .4GHz Fleurs 
* 2.3GHz ]]dbinbilla 
• 5-0GHz Parkes 
. 8-4 GHz ]]dbinbille 

,! 

10 ~ _  - *-+%-+~, 

0'6 ~.w 

0 " 4  / I I I I I I I I I I 1 I I I I I I I I 2 0  h 
08  h 12 h 16h 20 h 0 0  hO4 h 08  h 12 h 16h 20 h 0 0  h 04  h 0 8  h 12 h 16h h 0 0  h 0 4  h 08h 12 h 16h 

• .,--1977 Moy  12""  ~ May 13 - " May 14 -, ", MQy 15 ," 
UT 

Fig. 7. Simultaneous radio observations of Cir X-I at 1.4, 2.3, 5.0 and 8.4 Ghz 
on 1977 May 13/15. Absolute errors are indicated for each frequency 

III THE GENERAL MODEL 

Clark et al. [14] and more recently others [1,7] suggested that Cir X-i is an 

eccentric binary star. We continue this proposition. The nominal distance of i0 

kpc to Cir X-I implies an absolute magnitude of the primary star, M v ~ -6 to -7. The 

estimated mass of the primary star is then in the range 

I00 M® 20 M 8 ~ Mp 

implying an early-type star. The 16.6-d periodicity of Cir X-I we attribute to the 

binary period of the system. 

If we assume the secondary is a compact star [16] with mass (M c ~ M@), then by 

Kepler's third law the semi-major axis of the system will lie in the range 0.35 ~ a 

0.59 AU. In Figure 8 we show the radius-mass relation for dwarfs and supergiants, 

together with loci of periastron distance for a 1 M@ star in an orbit with eccentri- 

city e. At periastron the compact star comes within a distance of about a(l-e)(~ 1 

1013 to 2 x (l-e) cm) of the primary star whose radius R is (i to 4) x 1012cm, The 
P 

secondary star thus approaches close to the surface of the primary, which must be of 

early type, in confirmation of our inferences from the observations. At closest app- 

roach the two stars effectively form a contact binary; the compact star will deeply 

penetrate any flow of material from the primary star. With the requirement of abso- 

lute optical magnitude (-6 to -7) the mass flow rate is likely to be substantial. 



180 

Log(R~ e) 

0 
0 

'Mo  
Koy 

5 7 -  • 

AOV I ~ -'I 

1 2 

L o g ( M / M , )  

Fig. 8. The heavy curves show 
the radius-mass rela- 
tion for main sequence 
(dwarf) stars (curve 
V) and for supergiant 
stars (curve I). The 
light lines give the 
periastron distance 
for a star of 1 M8 in 
an orbit with eccen- 
tricity e. The range 
of masses which are 
consistent with the 
absolute luminosity 
is indicated by the 
arrowed line along the 
mass axis 

Mass loss rates for single early-type stars (O,B) are in the range 10 -6 to l0 -5 

M 8 yr -I [17-19]. Hutchings [20] further notes that the high mass loss rates >1015 
-i 

M® yr found in early-type stars Which are in known or suspected binary systems are 

a result of tidal interaction during the close passage of the two stars. For X-ray 

binary systems mass loss rates of 10 -5 to 10 -6 M 8 yr -1 are preferred [21]. The pre- 

sence in Cir X-I of intense H~ emission, and of He emission, indicates a mass loss 

at least as high as this, and Hutchings' [20] indices may in fact require a rate as 

high as ~i0 -4 M 8 yr -I We Suppose the mass loss rate M from the primary star of mass 

M is conservatively 10 . 6  M~ y r  - 1  
P 

In Figure 9 we show schematically the dynamics of our proposed model. 

We shall argue below that the eccentricity e of the orbit is large (~0.8), so 

that the compact star's orbital speed V 0 at periastron is about the free-fall speed - 

i.e., 

m M@) ½ s -I v 0 (2G ~I~)½ 5 x lO 7 (~120 cm . 

Further, the duration of close encounter is t O z ~Rp/V 0 z 105 s, and the velocity of 

ejection V of matter in the stellar wind of the OB supergiant is ~107-108 cm s -I 
w 

The density n(R) of the stellar wind at radius R from the surface of the supergiant 



V2/2 = GMc/R 

will then be 

n(R) = n,(Rp/R) 2 with n, ~ i0 II cm -3 

Note that if this material free-falls to the surface of the compact star then the 

density N(R), at a distance R from the surface, is defined by N(R)VR 2 = constant. 

Here V is the free-fall velocity. Since 

. . . . .  i 

we then have N(R) ¢ I/R 3/2. If the stellar wind is captured at a distance of ~i012 

cm from the primary star, where the stellar wind speed is about 200 km s -1, the den- 

sity near the compact star's surface will then be about 1018 to 1019 -3 cm We shall 

use this later (Section V). 
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Fig. 9. Pictorial representation of the physics of the binary star system Cir X-1. 
The orbit of the compact star round the supergiant primary is based on the 
angle @ and eccentricity e derived from the X-ray light curves of 1976-77 
(see Lecture II Figure 1 and Section VII (a)) 

IV GENERATING SHOCK FRONTS 

(a) GENERAL 

The problem is to determine a suitable emission mechanism to account for the 
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inferred high brightness temperature during the radio flare of l0 ll to 1013 K (0.i 

AU/d) 2 in the frequency range 1.4 to 14 GHz. Because the collision time of an elec- 

tron with an ion (see Section VI (a)) is significantly shorter than the free-fall 

time, the energy an electron gains during its fall to the surface of the compact star 

is ~GMcmi/R c (R c = radius of compact star, M c = mass of compact star, m.l = the mass 

of the ion). The electron is accelerated to a relativistic energy with 

c 2 y H Ee/m e ~ GMcmi/RcmeC2 z 2.5 x 102 . 

The equivalent electron temperature however is only 

1012 T e z Ymec2/k ~ 2.6 x K 

which is some 1 to 3 orders of magnitude smaller than the inferred radio brightness 

temperature discussed in Section II(c),(h), above. 

There is a vast array of mechanisms for enhancing brightness temperature above 

particle temperatures, but generally two classes are available. The first directly 

boosts particle energies without modifying the absorption coefficient [22,23]. The 

second leaves the particle energies alone but changes the absorption coefficient un- 

til it goes negative [24,25]. We shall concentrate in (b) below on a direct acce- 

leration mechanism in a shock front, and then in (c) consider synchrotron emission 

from very energetic electrons with y z 103 to 105 . 

(b) MASS-ACCRETION-GENERATED SHOCK FRONTS 

Accretion on to collapsed objects has been treated in a general way by Zel'do- 

vitch and Novikov [26], and more specifically for the case of neutron stars in bin- 

ary systems by Ostriker and Davidson [27] and for black holes by Shakura and Sunyaev 

[28]. We give here only those details of the theory which are relevant to Cir X-I. 

In both cases a critica I mass flux is associated with the Eddington luminosity: 

Lcr = 1038(Mc/M8 ) erg s -I 

corresponding to a situation in which the radiation pressure on the ionized infalling 

gas is equal to the gravitational force. 

The total luminosity can be crudely written 

L = GMcMcap/R c (Mca p = mass capture rate)• 
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For a compact star with Mc z M̂ ~ and with RC ~ 106 cm we have L ~ 1020 Mcap erg s -I. 

Thus Mcrit = 1018 g s-I -8 -i (HI0 MQ yr ) is sufficient to produce the Eddington lumi- 

nosity, L . Accretion rates larger than this value lead to the ejection of the over- 
cr 

lying material by radiation pressure. AS pointed out, [28], the object may be an X- 

ray emitter with luminosity near 1038 erg s -I if viewed from certain angles: in other 

cases, the energy is mostly radiated in the optical and UV regions of the spectrum, 

since the inflowing matter and the primary's stellar wind are both opaque to X-rays. 

In the optical spectrum, the object can appear as a hot star with a rapidly expand- 

ing envelope. 

If the mass accretion rate goes significantly above Mcrit (say be a factor 2) 

the speed at which the overlying material is blown off initially is the opposite of 

its infall speed. For Cir X-I mass transfer through Roche lobe overflow occurs only 

for the 105 s of periastron passage, after which the compact star is so far from the 

large primary that overflow ceases (or at least slows appreciably). 

Consider a unit area of material above the surface of the compact star. In-fal- 

ling material would initially form a column 1012 cm high (the separation of the two 

stars at periastron). Since M > Mcrit' material at the bottom of the column is acted 

on by radiation pressure and is re-ejected upwards. Material at the top of the col- 

umn is still falling towards the compact star. Thus a column of material forms an 

outward moving shock wave with an overlying density p ~ R -~ (with ~ = 3/2) - under 

the assumption of steady, free-fall, accretion. The radiation pressure pushing the 

gas outwards builds up to its Eddington limit in a small fraction of the free-fall 

time [28,29]. Regarding this as an impulsive pressure acting on the overlying gas, 

a blast wave then propagates outward into an essentially stationary medium. If the 

blast wave is of the Sedov [30] form it follows that blast ~ t 2/(5-~) , where ~ is 

the external density variation power in p = Ar -~ (the constant A has dimensions of 

g cm~-3). If the accretion is steady we have ~ z 3/2 and blast = t4/7 {E0/A}2/7" 

Thus Vblas t = d~las~/dt = 4/7 ~last/t. Here. ~ EIu iSlthe2 energy 6injected-9/2int° the. 

blast, where E 0 z i0 1 erg [28] also A z 3M/4 (2GMc) " z 2 x i0 g cm for M 

10 -6 MQ yr -I Since A and E 0 enter the blast radius formula raised only to the 2/7 

power, R,~ _ is not very sensitive to the values used for M or E0: blast = 3 x 109 
4 D~as~ 

t /7 cm. At 102 s after formation the blast radius is about 3 x i0 I0 cm, while 105 

s later the blast radius is ~3 x l012 cm, comparable to the periastron separation. 

After 105 s the stars are so far apart that mass accretion is negligible. The cor- 

i0-i0 -3 responding mass densities at the blast front are p(t = 102 ) z 4 x gcm , p(t = 

105 ) = 4 x 10 -13 gcm -3 

(c) GENERATION OF SYNCHROTRON RADIATION NEAR THE SHOCK FRONT 

Having proposed a mechanism for production of an expanding shock it is relevant 
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to consider some of the effects in the neighbourhood of the shock front. The colli- 

sion time for an electron in a fully ionized plasma is essentially fixed at Tcoll 

10 -2 s (i.e. independent of spatial scale; but see Section VI(a)). An electron with 

v ~ c travels about 3 x 108 cm before it equilibrates in energy with the surrounding 

plasma. Electrons cross and recross a shock front and cannot stream too far from it 

for several reasons [22,23]: one is that they lose energy to the surrounding plasma 

by ionization, bremsstrahlung, Compton scattering and synchrotron radiation; the sec- 

ond is that any streaming anisotropy or bulk pressure anisotropy of the energetic 

particles through the surrounding plasma sets up its own unstable Alfv~n waves which 

scatter the particles producing the waves. This effect alone prevents the particles 

from escaping from the shock. Given an injection energy E 0 ~ 200 me c2 the resulting 

steady-state number density of particles within one mean-free-path of the shock front 

is [22,23] 

N(E)dE ~ (F-I)E0-1(E/E0)-FdE , 

(2+ X) + X(2U/Vs-VA/V s) 
with F = 

(X-l) -X(U/Vs+VA/V s) 

where X is the factor by which the gas is compressed at the shock, V s is the shock 

speed, V A the Alfv~n speed and U the effective bulk velocity at which the scattering 

particles are moving in the downstream shock region when viewed in the rest frame of 

the downstream gas. The sound speed downstream of a strongly shocked gas is about 

%Vs, so it might be thought that U = O(Vs). However, for sound waves travelling in 

many directions, and where turbulence tends to make the gas isotropic, U, V A << V s 

(see e.g. [31-33]). With U, V A << V s, F ~ (2+X)/(X-I). compression across a strong 

adiabatic shock gives X = 4, so that F z 2. 

Thus a non-thermal spectrum of relativistic particles is maintained by repeated 

crossings of the shock within a region whose width is about one relativistic elec- 

tron's mean-free-path - i.e. about 3 x 108 cm. The spectrum of particles is ~E -F 

with F z 2. The high-energy electrons so produced have a bulk outward velocity equal 

to the shock speed. 

The conversion of already energetic (~ ~ 200) electrons to very energetic (~ 

l03 to 105 ) electrons need not significantly strain the energy budget of the shock 

wave, since the photon energy density derivable from the Eddington luminosity Lcr(~ 

l038 erg s -1) driving the blast front is ~Lcr/4~cR ~ = 2 x 1014 erg cm -3 About 5 x 

l019 electrons cm -3 could be made highly relativistic before they exert a significant 

influence on the total energy budget. The power output in the form of synchrotron 

radiation would then have a maximum value of 
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P = 5 x 1019(2/31e4(m2c3~-iB21020 erg cm -3 s -I 
e 

10-3B 2 erg cm -3 s-i 

Thus for B < 3 x 108 gauss the maximum rate of energy loss due to synchrotron radia- 

tion is only a small fraction of the power density available. 

The production of intense radio bursts near Cir X-I then becomes a relatively 

simple matter. Radiation-driven shocks sweep out the compressed magnetic field car- 

ried in originally towards the compact star by the infalling gas. The relativistic 

electrons around the shock front synchrotron-radiate in this field. And it is the 

synchrotron radiation we are observing. To estimate the magnitude of P we need now 

to discuss the possible range of values of B. 

(d) DISCUSSION OF THE MAGNETIC FIELD IN THE EMISSION REGION 

Stars typically possess surface magnetic fields, B0, in the range 1 to I0 gauss. 

The field is trapped in an Archimedian spiral by the stellar wind [ 34]. The magnetic 

field of the primary star of Cir X-I is essentially "frozen" with the mass in its 

fall towards the compact star and subsequent ejection (i.e. B ~ I/R 2) . 

2 
Now a relativistic electron of energy YmeC emits its synchrotron radiation pre- 

2 6 2 
dominantly at frequency ~ . z eB~ /2~m c ~ 2 x I0 By Hz. To obtain radio bright- 

13 maln 15 e 
ness temperatures of i0 to i0 K we have argued for ~ ~ 103 to 105 , in which case 

~main z (2 x 1012 to 2 x 1016)B Hz. On the other hand, radio observations of Cir X-I 

indicate ~main z 1-15 GHz, so that the magnetic field where the particles are radia- 

ting must be in about the range 5 x 10 -4 to 5 x 10 -8 gauss. If the field is indeed 

the result of capture and compression of a fraction f of the stellar wind magnetic 

field, with flux conservation of the captured fraction, then since the radiation is 

predominantly from regions whose size is R ~ 109 to 1012 cm, simple arguments suggest 

the magnetic field there is ~f Bwind (1012/R) 2 Typical estimates of stellar wind 

magnetic field for main sequence stars are Bwind ~ 10 -4 to 10 -5 gauss [34] at about 

1012 cm from the wind-producing star. Hence with B(R ~ 109 cm) ~ 5 x 10 -4 to 4 x 10 -8 

gauss the trapping fraction f is ~10 -6 to i0 -I0. 

An important aspect of this discussion is that the accreting material falls in 

from all directions until angular momentum halts the flow for most of the material. 

Although originally the magnetic field may have been ordered (as a result of the out- 

flow from the primary star), by the time the material has twisted itself predominantly 

into a disk rotating around the compact star and/or found itself falling into the 

compact star's sphere of influence from all directions, the resultant net magnetic 

field can be much smaller than the original Bwind. 
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For example, a simple estimate indicates a magnetic diffusion time over a scale 

length L of 

T B 4L2~Oc -2 st 

where the electrical conductivity of a fully ionized hydrogen plasma is 0 = 3 x 107 

T 3/2 s -I. Now under free-fall conditions the appropriate temperature is the ion tem- 

perature and Tio n ~ GMcmi/kR , so that with p ~ L/R we have 

T = 2R½1014p 2 s. 
B 

The magnetic Reynolds number for the infalling gas in r ~ 1012 cm is 

R = 2.1027p2R -1 >> i, 

which implies that the magnetic field follows the fluid flow lines until the plasma 

infalling from different directions brings two flux tubes to within a distance £B z 

R 3/2 x 10 -14 1012 cm of each other when the field diffuses out of the plasma. For R 

cm, ~B = 106 cm. Now two such elements of plasma can only be regarded as separate 

entities provided they are separated by more than one mean-free-path. But Imfp z v 

Tcoll ~ 1011/R ½ cm. Two fluid elements must have completely interpenetrated when 

Imfp > R - i.e. when R <~ 3 x 107 cm z 30 Rc. For R < 30 Rc the net field in the in- 

falling plasma will be the sum of all the fields. But tie elements of fluid are fal- 

ling in from all directions. Hence a%best, in R ~ 30 R c one would expect a resul- 

tant field which preserves the total energy stored in the compressed magnetic field 

and not the flux. We suspect the magnetic field compression in R ~ 30 R is even 
c 

less than this generous upper limit, since some of the field energy must undoubtedly 

diffuse out of the plasma and some of the field must reconnect. But the precise trap- 

ping fractions are obviously highly model-dependent. It seems to us not implausible 

that the overall magnetic field compression near the compact star could be close to 

zero, implying B = Bwind. 

In summary: we propose a blast wave model in which the magnetic field is trap L 
-2 

ped in the plasma, decreasing as blast" synchrotron emission results from energetic 

electrons moving in this field of 10 -4 to 10 -8 gauss. 

Note that the maximum power output in the form of synchrotron radiation is l0 -19 

< P < i0 -II erg cm -3 s -I 

ASSOCIATED RADIO EMISSION AND ABSORPTION EFFECTS 

A number of emission mechanisms alternative to that of synchrotron radiation 
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should be considered for the generation of the radio emission. The plasma itself 

may influence the radiation in the vicinity of the shock front and these effects should 

also be considered. However, estimates for some of these processes indicate they will 

not be important factors in our basic model. We have therefore relegated the follow- 

ing processes to an Appendix: 

Bremsstrahlung radiation near the shock front 

Curvature radiation 

Plasma collisional effects 

A possible stimulated emission mechanism 

The following processes are important to our model: 

(a) Emission above the plasma frequency (~) 
P 

(b) Compton processes 

(c) Synchrotron self-absorption 

(d) Razin effect 

(e) Free-free absorption 

Consider each in turn. 

(a) EMISSION ABOVE THE PLASMA FREQUENCY 

Angular frequencies less than the local plasma frequency cannot beradiated in 

the vicinity of the shock. (At least this is so in a cold, field-free plasma. We 

shall use this particular situation to obtain a rough estimate of the cut-off frequen- 

cy). Only frequencies in excess of V > ~ ~ 5 x 104 n ~ - Hz will be radiated. On the 
- p e 

assumption that the shock forms at about 3Rc, in the vicinity of the compact star we 

have (see Section III) 

~ 104(n0/1018 cm-3) I/2 (3Rc/r) 3/4 GHz H 
P 

At a distance r z 3 x 109 cm, radio emission occurs at a frequency ~ k 102(n0/ 

i018) I/2 GHz. By the time the overlying plasma is optically thin to gigahertz radia- 

l0 II ~(n0/1018) I/2 tion (at r z 3 x cm), the plasma frequency ~p is GHz. Thus radio 

emission above ~i GHz is capable of being radiated. As the radiation progresses out 

into the stellar wind of the primary star the cut-off plasma frequency, ~Pwind' is 

~(Rp/r)(n0/1010) I/2 GHz. At r ~ Rp (radius of primary star), ~p ~ (n0/1010)i/2 GHz, 

so that radiation produced above ~i GHz can transit the stellar wind. Thus, when 

the radio emission produced near the expanding shock front reaches about i0 II cm from 

the underlying compact star, not only is the overlying plasma optically thin, but the 

emission can proceed to propagate through both the remaining infalling plasma and the 

surrounding stellar wind. 
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Frequencies less than ~l GHz will not propagate through the stellar wind when 

produced within about i012 to 1013 cm from the massive primary star (Figure i0). More 

generally, for R ~ 75 Rc(Timax/2 x 1011) 3/2 (1018/n 0) ~ R# it is the plasma frequency 

criterion V > Vp which dominates, while in R ~ R#, the optical depth criterion Tf_f 

1 dominates over the plasma propagation criterion (see Section V(i) for an esti- 

mate of the free-free optical depth Tf_f). 

2.0 

1.6 

-~ 1.6 v 

>" 1.4 

1.2 
~D 

x 1.0 

u_ 0-8 

x/, / \,__,I, / 
x .~...x/X------~x/x 

I X- ray phose 0.0 

I I I I I I L L I I I A I I l , , ' 

2 3 Z, 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

September 1977 

Fig. i0. Radio observations of Cir X-I at 408 MHz on 1977 September 2/18. Note that 
the X-ray turn-off occurred on about 1977 September 5 but that the flux at 
408 MHz did not peak until about six days after X-ray phase zero (marked by 
an arrow). A stellar wind with a plasma frequency of about 1 GHz at peria- 
stron would produce precisely this effect 

(b) COMPTON PROCESSES 

A sustained flux of high-energy electrons in the vicinity of the blast wave ~mp- 

lies that Compton interactions between the photon flux and the particles may occur. 

Two cases should be considered: the enhancement of a photon's energy as a result of 

interaction with a relativistic particle, and particle energy losses. 

Behind the shock the photon number density is 

nph = (4~las t c ~ph) -I 

where "~Oph ~ GMcmiRc - 1  = 10 - 4  e r g  

and L ~ 1038 erg s -I 

so ~h 

(Eddington limit). 

-~ 2"1011(3"109cm/~last ) ~ 3  2 cm-3 
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The inverse Compton energy loss of a single relativistic electron in this photon- 

bath is then 

dE/dt ~- 8.10-26(~phnph/levcm-3 ) (meC2~/leV) 2 eVs -I 

For electrons with ~ ~ 105 , the time between collisions can then be estimated by wri- 

ting dE/dt z ~meC2/TCompton , with 

TCompto n z i0-5(i05/~) (~last/3.109 cm) 2 s. 

Thus for a distance d0(~CTcompto ~ ~3 x 106 (i04/~) (~last/3 x 109) 2 cm behind the 

shock (i.e. in the radiation-dominated regime) relativistic electrons will maintain 

their energy. 

In the vicinity of the shock the low-energy radio photons produced by synchrotron 

radiation may be boosted to high energies by re-collision with the relativistic elec- 

trons. For these inverse Compton reactions the final photon energy Eph is then about 

4/3 2 eI' where ~ is the mean energy of the electrons (in units of me c2) and 
Eph 
e I is the initial photon energy. Estimating eI ~ eB~2/me c gives 

eph -~ 4~4eBh/3meC ~ 2(B/10-6gauss)(~/105)4MeV . 

Electron energies y z 105 (~i0 ll eV), which are required to account for the high radio 

brightness, thengive eph z 2 (B/10-6gauss) MeV. But these photons in turn will scat- 

ter off the thermal electrons and protons existing 1 mfp ahead of the shock. (The 

mean electron or proton energy is about IO(3Rc/R) MeV). If the mean relativistic 

electron energy is maintained by repeated shock crossings at y ~ 105 then as the shock 

front expands 

2 
£ph = 2(R0/~last) MeV , 

where RA is that radius at which B Z 10 -6 gauss. Clearly eph < kT e when R ~ R0(R0/ 

15Rc )l/~ ~ R%an~ photons from inverse Compton scattering then are unobservable against 

the thermal photon background. As we shall show in Section VI(b), the expanding med- 

ium becomes transparent (Tfb < i) to photons of energy eph when 

eph ~ 0.i (1011cm/R) I/6 key . 

Estimating R 0 z 3 x 109 cm (corresponding to about 1 s after blast-wave formation) 
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have R% z i0 I0 eph(1010 cm with cm) z 0.2 keY, and for R ~ RT, the expanding med- we 

ium is then transparent to X-ray energies eph ~ 0.2 keV. Thus the production of high- 

energy photons by inverse Compton scattering off the relativistic electrons at the 

blast front produces energies in excess of the thermal energy of the surrounding plas- 

ma only for a time which is at most of order (R%/3 x 109) 7/4- z i0 s (see Section IV). 

Thereafter the thermal plasma provides a background of photons which swamps the inver- 

se Compton photons. 

(c) SYNCHROTRON SELF-ABSORPTION 

For a uniform source the optical depth for synchrotron self-absorption can be 

written 

= (~/~0)-(F+4)/2, 

where ~0 = 1.6 x 107 B 3/2 8-4/5 (S0/iJy) 2/5 Hz, 

and @ is the angular size of the source. 

Alternatively, if at some time the maximum in the source flux density, Sm, occurs 

at a frequency ~ we can use the Terrell [35] relation to note that the source is 
m 

optically thin (for ~ > ~max ) when 

103(Sm/1Jy) i/2 -5/4 1/4 @ k 5 x ~m (B/I gauss) tad. 

For Cir X-1 observations show that V z 15 GHz. Then S Z 2 Jy for the source at 
m m 

distance £(~i0 kpc), so that with @ ~ 2 ~last/£ and B ~ 10 -4 to 10 -8 gauss the opti- 

cally thin requirement is 

blast ~ 3 x l0 ll to 3 x i012 cm. 

With blast z 3 x 109 t 4/7 cm, the optically thin radiation occurs at 15 GHz when t 

(2 x 102 to 2 x 103) 7/4 s after blast-wave formation - i.e. t k 3 x 103 to 3 x 105 

s ~ t.. Radiation at frequency ~ will then become optically thin at a time T = t,x 

(15 GHz/V) 35/16 s. Thus 1 GHz radiation should be seen roughly 2 x 105 to 2 x 107 s 

after 15 GHz radiation - i.e. when the shock radius is blast z 5 ~ 1012 to 5 x i013 

cm. 

On this basis we shall argue later that it is the synchrotron self-absorption 

process which is primarily responsible for the temporal structure observed in radio 

flares. 
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(d) RAZIN EFFECTS 

For synchrotron emission in a cold magnetoactive plasma the capability of the 

electrons to radiate at a frequency 9 is suppressed when 

~ 15(ne/l cm-3)(B/10 -6 gauss) -I MHz. 

We have argued above that nearly all the electrons at the shock front are relativis- 

tic and not cold, so than n is much less than the total number of electrons. To 
e 

avoid Razin suppression we require 

< 1 ~(~/i06 Hz)(B/10-6 gauss) cm -3 n e ~ 

Radiation is seen at ~) ~ 1 GHz so that 

n ~ 104(B/10 -4 gauss)(~/109Hz) cm -3 
e 

At the radiation driven shock front we have 

where 

behind = n, exp [ (R-~last)/~], 

A ~ c TCompto n ~ 3 x 105(105/>)(~last/3 x 109) 2 . 

R < Rblas t 

Since the electrons are typically at 100 times the ion temperature it follows that 

the electrons become cold in the sense kT << m c 2 when repeated shock-front crossings 
e e 

are not capable of supplying enough energy to keep all of the electrons relativis- 

tic. 

Now kT << m c 2 when R >> 104 R Z i0 I0 cm, and the shock front fails to supply 
e e c 

enough  e n e r g y  t o  k e e p  a l l  o f  t h e  e l e c t r o n s  r e l a t i v i s t i c  when 

2 1 
meC k 2 miV hock ' 

2 > 2 3/2 4/7 
- i.e. when m c (8/49) R^ m. (R^/P~_ ) , where blast = R0 t ; We have pre- 

e ~ u 1 u blast 
9 

viously estimated R02Z 3 x i0 cm, so that when blast ~ i°i° cm the bulk of the elec- 

trons cool below meC . Thereafter electrons lose energy by adiabatic expansion as 

the shock front expands. 

The time interval between shock expansion from blast z 3 x i0 I0 to 3 x 1012 cm 

is At z 105 s. This is comparable with the time required under synchrotron self- 
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absorption to go from an optically thick to an optically thin stage in the evolution 

of the outburst. Clearly both Razin and self-absorption processes are relevant to 

the cir x-i source. 

(e) FREE-FREE ABSORPTION ESTIMATE 
The differential optical depth for free-free absorption in a fully ionized sphe- 

rically-symmetric hydrogen plasma is [36] 

2T-3/29-2 h~ << kT dT~/dr = 10-2ne 

n0(3Rc/r) 3/2 , T 3Rc/r) gives which, with n e = Timax( , 

dYe/dr = 109/~)2(3Rc/r)3/2(no/lOl8)2(2.1oll/Timax )3/2 

The depth one can see into the material surrounding the compact star at a frequency 

is determined by T~ z i. Ignoring for the moment the stellar wind of the large 

primary star, we see that this occurs at a radial distance, r,, from the compact star 

given by 

r, = 1.4 x 1020 (~/109)-4(n0/1018)4(2.1011/Timax)3 cm. 

With radiation production at r z Blast z 3 x 109 t 4/7 this means that radiation at 

a frequency ~ can be seen t seconds after formation of the shock, where 

t ~ 3.1017(~/109)-7(n0/1018)7(2.1011/Timax )21/4 s. 

This time is an extremely sensitive function of the parameters entering a detailed 

accretion model. Thus if n o 1016 -3 = cm , then at ~ ~ 15 GHz, and with T. = 2 x 
imax 

I0 II K, t > 6 s, while if n o ~ 1017 -3 cm , t ~ 2 yr! This reinforces the point that 

estimates of the absorption cut-off frequency and spectrum shape are extremely model- 

dependent even when many observed spectral points are available. It is, perhaps, 

better to invert the relation, and note that if radiation is seen at time t at fre- 

quency ~ then 

n0/1018 ~ (~/109)(Timax/2.1011)3/4(t/3.1017)i/7 

Observations of Cir X-I in the radio regime indicate (~/i09) z 1-15, while t Z 105 s. 

i0 II Hence, with T z 2 x K, an estimate of the particle density at r = 3R is 

n~Xl016 ( -3 c 
afforded by 1-15) cm 
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The supergiant star's stellar wind outside of r = l012 cm from the compact star 

can also absorb the radio emission by free-free absorption. With Twind ~ 5 x 106 K, 

n, = i0 I0 cm-3 2 , nwind ~ n,(Rp/r) the absorption depth is: 

Twind ~ 102(n,/10 I0 cm'3)2(Rp/r)(~/109 Hz) -2. 

• (V/I09 H z ) For r 3Rp, %wind ! 1 for = 5, implying one can see right through the 

wind for ~ ~ 5 GHz - again this is somewhat sensitive to the precise values used for 

n, etc. About all that can be argued is that the numbers indicate a free-free opti- 

cal depth near periastron of order unity. 

VI PRODUCTION AND ABSORPTION OF X-RAYS 

Here we consider, in turn, the accretion disk and free-bound absorption effects. 

(a) THE EFFECT OF AN ACCRETION DISK 

Accretion disk models for compact sources have been studied in detail by several 

authors [37,38,29,28]. In the standard Roche picture of binary mass transfer, accre- 

ting matter normally has too much angular momentum to fall radially on to the secon- 

dary star; it must instead form a disk and then the material will spiral inward as 

the angular momentum is dissipated. The properties of such accretion disks seem to 

be rather dependent upon detailed assumptions about their structure, viscosity, etc. 

However, not unreasonable models have been constructed from which one can estimate 

X-ray emissivities [ 29,28]. The details are complicated but a reasonable precis of 

the main points is as follows. 

If the central object is a neutron star, then the accretion disk is probably 

not the dominant influence on the radiation output. Either the disk extends inward 

to the surface of the star, in which case both the star and the disk contribute to 

the emission, or it extends only down to the Alfv~n surface - this point can be con- 

sidered as the point where the intrinsic magnetic field pressure of the neutron star 

becomes comparable to the kinetic energy of the accreting material. The infalling 

material then follows the field lines down to the compact star's surface, co-rotating 

with the star and flowing towards the magnetic poles. The infall rate near the poles 

depends on the mass loading rate into the disk. Significant radiation is expected 

if M approaches or exceeds the Eddington limit [29]. Presumably an outward propa- 

gating shock front is then present [28], as we have outlined above. 

Rather high electron temperatures are reached during the "settling" process of 

the disk on to the underlying small star [37]. The reason is that while angular momen. 

tum of the disk is beir~ lost by vlscQsity, collisions occur between the electrons 

and ions. This equilibrates the kinetic energy between particle species rapidly com- 
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pared to the dynamical time scale. To illustrate the point, consider the free-fall 

situation. 

Ions under free-fall from infinity reach a temperature 

T.(r)~ = 2GmiMc(rk) -I . 

• I012 For r = R this gives T z 1.5 x K, equivalent to an ion speed of about 2 x 
~I ~max 

i0 I0 cm s . Electrons ~n~%~G~ reach T e z (me/m i) Ti(r) << T i. Now the electron- 

ion collision time for a fully ionized hydrogen plasma is 

Tcoll = 6.10-1 T3/2 -i n s. 

-i r-3/2 
Since T ~ r and n = under free-fall conditions, Tcoll is roughly independent 

of spatial position. For P0 z 4 x l0 -4 g cm -3 (corresponding to r z 3R c) and T z T. 
-2 ½ ion 

we have ~coll ~ I0 s. The corresponding mean-free-path is ~mfp ~ (kTi/mi) Tcoll ~ 

1.4 X 104 (Rc/r) ½ cm. Thus equilibration of ion and electron energies takes place 

very rapidly compared to the dynamical time scale. The accreting disk material can 

therefore be regarded as an isothermal gas at the ~on temperature T i ~ 1012 (106/r)K. 

For a disk held out at 109 cm from an underlying compact star by an intrinsic 

magnetic field or by angular momentum considerations we have T i z 109 K and lmfp z 

3 x 102 cm. 

The total mass finally stored in the disk after periastron passage depends on 

the competition between the radiation pressure blast on the infalling material (cau- 

sed by the high initial mass transfer rate from the Roche lobe overflow near peria- 

stron) and the ability of the material to flow into a disk by angular momentum con- 

servation before being caught and blasted back out by the outwardly propagating shock. 

The disk accumulation of mass per periastron passage cannot exceed about M t0 ~ 10 -8 

M@ , and we suspect it is considerably less - say 1 to i0 per cent of this - but it 

is extremely difficult to estimate the mass fraction going into the disk [28]. With 

Mdisk ~ 10-6 to 10 -8 MQ yr -I the disk will last, at best, for a time of order 10 -2 

to 1 yr. To invert the problem: if one assumes that the disk replenishment per orbit 

(~16 d) precisely balances the diffusive loss then 

Mdisk = (M8/20) x (10 -6 to i0 ~8) = (5 x 10 -8 to 5 x i0 -I0) M@ . 

The mass accretion rate of this tenuous disk down on to the polar caps of the star 

should then be much slower than the original mass inflow for at least two reasons. 

First, the mass of the accretion disk is now less so that the balance point against 
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the magnetic field of the compact star is further removed from the surface; second, 

the sDeed of particles down the field lines is slower (they have not fallen as far), 

so that it takes them longer to cover the longer field llne distance to the poles. 

The mass flow rate out of a steadily rotating Keplerian disk has been roughly esti- 

mated to be [29] Mdisk z 10 -6 to 10 -8 MQ yr -I Such an accretion disk should then 

be "steady" on a time scale long compared to theperiastron passage time. We return 

to this point in Section VII. 

(b) FREE-BOUND ABSORPTION 

The differential optical depth for free-bound absorption in a spherically sym- 

metric ionized hydrogen plasma in which a number fraction f. of ions exists of nuc- 
1 

lear charge Z i, which we shall take to be hydrogenic in character, is [39] 

.Z~) n -3 dTf-b/dr = 3"i029(fi i e 

for ~ >> xi/h, where Xi is an absorption edge energy. At a distance r from the com- 

pact star, with n e = n0(3Rc/r) 3/2 (and again ignoring the stellar wind of the pri- 

mary star for the moment), it follows that the distance one can see into the expan- 

ding atmosphere of the compact star is determined by: 

~f-b ~ 3"1029(Z~ fi ) no 6~cV-3(3~c/r)I/2. 

Then Tf_ b ~ 1 for 

> 1017 (Z 4 fi ) 1/3 (n0/1018) 1/3 (3Rc/r) 1/6 Hz. 

1017 -3 i011 < 1 for Taking the estimates n O z (1 to 5) x cm and r z cm we have Tf_ b ~ 

~ 106(fi Z~) I/3 (1011/r) I/6 Hz. 

Assuming cosmic composition we have fi z 10-3 and Z = i0, so that ~ ~ 1017 (1011/r) 

Hz, corresponding to a photon energy E ~ 0.i (i011/~) I/6 keY. 

1/6 

But, as we have previously seen, even though X-ray photons may escape nearly 

unattenuated from the compact star's sphere of influence ~hey still have to propagate 

through the surrounding stellar wind. At a distance r from the primary star, with 

= n.(R/r) 2_p and n. z i0 I0 cm -3, the free-bound optical depth in the stellar wind n e 

from infinity to the compact star is determined by 
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Tf-b = 3"i065f ZJ~-3r-l(n*/1010)" 1 i 

The stellar wind is then transparent to photons if 

> 1017 (n,/1010) i/3(Z~fi)i/3(iAU/r) I/3. 

Again with fl ~ 10-3' Zi = i0, a crude estimate is 

E ~ h~ ~ (n,/1010) i/3(iAU/r) I/3 keV , 

so that when the compact star is near periastron (r ~ 1012 cm) only photons with E 

3 keY can escape, while near apastron (r = 1013 cm) photons with E ~ 1 keY can escape. 

Thus the X-ray spectrum "hardens" near periastron, as observed [7,12]. More detailed 

estimates illustrating the sharp drop of X-ray intensity produced by the high eccen- 

tricity of the compact star's orbit are provided in Lecture II. 

VII THE INFLUENCE OF THE ORBIT ON THE LIGHT CURVES 

Having formulated an emission model to explain the radio and X-ray emission we 

need now to investigate the light curves of the power radiated from the binary system. 

(a) THE X-RAY LIGHT CURVE 

Away from periastron the compact star accretes little mass from Roche lobe over- 

flow of the primary star; its X-ray emission is maintained by mass falling from the 

accretion disk established at periastron passage. 

As a result of the periastron passage time of ~105 s, the mass in the disk will 

be ~10 -8 M@. The steady luminosity in the form of free-free emission from the hot 

disk is about 1030 erg s -I - i.e. about l0 -3 L@ - and is predominantly in the i0-i00 

keY band (or softer). This flux level is much exceeded by the steady X-ray flux pro- 

duced by mass leaving the accretion disk and falling on to the underlying compact 

star. Allowance must be made for absorption of the X-ray flux by the surrounding 

stellar wind. For the infalling gas we have the luminosity estimate of mass accre- 

ting on to a star from a disk [38,29,27]. 

L = GMcMdisk/R c = 2.1035 to l037 ergs -I 

produced predominantly in the energy band 

GMcme/R c ~ h~ ~ @Mcme/103R c , i.e. 60 KeY ~ h~ ~ 60 MeV. 
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Scattering and absorption degrade the high-energy photons [ 28]. Presumably however 

some of them should still emerge out of the compact star's sphere of influence as X- 

rays into the surrounding stellar wind. The precise spectral shape depends on a detai- 

led model of scattering. In sections of the orbit where the wind is transparent to 

the observer we then expect the appearance of a flux ~1035 to 1037 erg s -I in the 

form of X-rays. 

Even though the disk is drastically altered at periastron X-ray emission ~1038 
-i 

erg s may still exist [28]. The variability of the X-ray source should then be a 

result of variable opacity of the primary star's stellar wind throughout the orbit 

rather than emissivity at the source. 

Coe et al. [7] pointed out that penetration of the X-ray-emitting secondary into 

a dense stellar wind would explain the change in X-ray spectrum observed by them over 

one X-ray cycle, in which the hard X-rays remained relatively constant while the soft 

X-rays varied. During an X-ray flare the spectrum generally softens, hardening again 

at the intensity cut-off [12]. The column density absorbing the soft X-rays, assum- 
-2 

ing material of cosmic composition, is ~2.5 x 1024 atoms of hydrogen cm [7]. Do 

we expect to see such a column density in the outflow of material from the Cir X-I 

primary? We assume a constant outflow velocity, so that an inverse square law of 

density follows, and assume outflow at ~i000 km s -I. These crude assumptions are 

justified when compared with the semi-emperical model of the well-studied outflow 
f 

from Zeta Puppis [18]. The column density to the surface of such a star is ~n H d£ 

<ne> R, ~ 1024 atoms cm -2 If the composition of the wind is of cosmic abundance ) 

this can provide enough attenuation to absorb up to 12 keV X-rays from Cir X-l. Lamers 

and Morton [18] note only minor deviations from cosmic abundance in the stellar wind 

of Zeta Puppis. 

We expect the stellar wind of the supergiant to be inhomogeneous and of variable 

speed and strength (as in our solar wind). Variation of X-ray absorption over a range 

of time scales is probable. However, the basic shape of the X-ray light curve recurs 

and our aim here is to explain the shape. 

When the compact star is between Earth and the primary, the absorption is small 

and the X-ray intensity high. Behind the primary the soft X-ray emission is com- 

pletely cut off. The X-rays are "on" for a small fraction of a period (low duty- 

cycle). This can arise from the fact that the compact ~bject, obeying Kepler's sec- 

ond law, will transit rapidly across the primary if periastron points to the Earth; 

conversely the star spends a long time at apastron hidden behind the stellar wind of 

the primary. 



198 

Asymmetry of the X-ray light curve arises from the precise orientation of the 

eccentric orbit with respect to the line of sight. If the compact star crosses in 

front of the primary and then passes periastron the light curve will build up gra- 

dually and cut off sharply as the compact object transits. At periastron it is in 

the denser parts of the stellar wind so the column density in front of the object is 

large. 

We have calculated the X-ray light curve of a constant X-ray emitter in orbit 

around a primary with an absorbing stellar wind whose density follows an inverse squa- 

re-law. We assume (according to Section VI(b)) that free-bound absorption dominates 

and that the optical depth for X-ray absorption is proportional to column density. 

Curves are scaled to constant maximum X-ray intensity to enable their shapes to be 

compared (see Lecture II for details). 

At low eccentricities (e ~ 0.5) the X-ray light curve is almost sine-like (Figure 

ll(a)). At high eccentricities (e z 0.8 to 0.9) it is easy to simulate the 1976-77 

shape of the X-ray flare from Cir X-i provided the angle from the line of sight to 

the line of periastron is 8 z i0o (longitude of the secondary star's periastron ~ 

280°)(see Figures ll(b)-(f)). If the angle is smaller (~ z 270 ° to 275 ° ) the X-ray 

light curve is double-peaked, the central minimum being caused by the object being 

deepest into the densest part of the wind at periastron, even though the line-of- 

sight distance is a minimum. To reproduce a single X-ray peak lasting no more than 

0.25 of a cycle the longitude of periastron should be within a few degrees of 280 ° 

if e z 0.8 (see Figure 9), or of 276 ° if e z 0.9. 

(b) OPTICAL LIGHT CURVE 

We have to explain the observed enhancement of the optical flux near periastron - 

see Figure 3 [2-4]. We suggest two effects to account for this. First, the primary's 

atmosphere swells to overflow its Roche lobe, thereby increasing the surface area of 

the primary by roughly a factor of 2. Second, X-rays produced by the compact star 

have to traverse more material than at apastron, degrading their energy even more 

than during the rest of the orbit. In a steady-state situation degradation to opti- 

cal and UV photons can occur [28], since the inflowing material is highly opaque to 

X-rays. For these two reasons the Cir X-I optical object is expected to brighten by 

at least a factor of 2 for about 105 s near periastron after the X-rays have "turned- 

off" observationally. 

(c) THE RADIO LIGHT CURVES 

(i) Shock Front Emission 

Radio emission and absorption regions near the shock front change during the 

orbit of Cir X-I. We suppose that the radio light curve is a result of the adiaba- 
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tic expansion of the shock front. As the shock expands less energy is available to 

R -I The magnetic power the relativistic plasma; in fact for these particles E ~ shock" 

field, compressed during the infall, will also decrease as the shock expands and, if 

magnetic flux is conserved, B = R -2 shock" The radio flares of Cir X-I follow the be- 

haviour expected from an adiabatically expanding cloud of relativistic electrons pro- 

ducing synchrotron radiation [36,40]. 

For a source whose angular size is 8 = Rs/i, and with a radiating thickness 4, 

the synchrotron flux density in the optically thin regime is given by 

S(~) = k2KB(I+F)/2@2~-(F-I)/2A 

where the number density Of particles of energy E is N(E)dE = K(t)E -r dE cm -3. This 

result holds for v ~ 9 , where ~ is the point at which the spectral curve reaches a 
m m 

maximum. 

For ~ ~ ~ the source turns optically thick and for ~ << ~ , S(~) ~ 82 5/2. 
m m 

As the source expands the radiation characteristics change in the manner detailed by 

van der Laan [40]. Briefly: since the optical depth T ~ 9-(F+4)/2 (assuming synchro- 

tron self-absorption), the highest frequencies become observable first. The flux 

density at a frequency ~ at time t is given (relative to its value, S at the spec- 
max 

tral maximum occurring at ~ = ~m at a time such that blast = R0 and A = A 0) by 

S(~,~last/R 0) = Smax(~/~m) 5/2(~last/R 0) 

x I! - exp[-Tmax(V/~max)-(F+4)/2(~last/R0 ) 
[ 

2(A/~0)[l-exp(-Tmax)] -I 

-(2F+3) ]} . 

We substitute blast ~ tS' and then, with the maximum of the spectral curve at fre- 

quency ~i at t = tl, the maximum reaches 92 at time t2, where 

(F+4) 8-1(4F+6) -I 
t2/t I = (~i/~2) 

and Smax(~2)/Smax(~ I) = (t2/tl)-8(7y+3)/(F+4) = (~2/~i) (7F÷3)/(4F+6) 

Thus the time at which spectral maximum occurs obeys t = -m with m = (F+4)/8(4+6) 

and AS ~ +n with n = (7F+3)/2(2F+3) (or AS ~ t-Sn). For 8 = 4/7 (which is 
max max 

appropriate for the spherical shock expanding into a medium whose density varies as 

R -3/2) and with F z 2 we have m ~ 0.75 and n z 1.2. We identify the time of X-ray 

cut-off as occurring close to the time when the first shock is generated. Measuring 
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the evolution of radio light curves from this instant gives m z 0.8 and n z 1 [2]. 

(Note that if ~ = 2/5 - appropriate to a uniform density - then m = 1.07, well out- 

side the observed value~) 

The presence of two maxima in the radio flux separated by approximately 18-22 h, 

argues for a slightly more complicated situation than encompassed by our simple model. 

3 x 109 t 4/7- cm the shock will merge into the stellar wind when p(~last ) _  With R 
2 -blast 2 

Vshock = Pwind Vwind' since the density of material at the shock front is just the 

1011 -3 compressed free-fall density. This merging Occurs (for Pwind ~ m i gcm Vwind 

i000 km s -1) when t ~ 2 x 104 s, at which time Q(~last ) ~ i0 Pwind' blast 1012 

cm, Vshoc k ~ 300 km s -I. So some 2 x 104 s after formation the blast front has dis- 

sipated. However, periastron passage of the small star lasts some 105 s. Material 

continues to rain down on the neutron star at an instantaneous rate ~i0 -8 MQ yr -I so 

that a second blast front driven by the Eddington flux is created. Again this pro- 

duces radio flaring by the same process as described above. The number of blast fronts 

that are produced during a periastron passage depends sensitively on the evolution 

of the blast and the rate of mass accretion. 

While the first such shock is "pure", the remaining shocks produced are propa- 

gating through the debris (the highly energized particles) left in the vicinity of 

the neutron star by the first shock. The detailed spectral shape and evolution of 

the radio emission produced by recurrent shocks of this character is difficult to 

estimate, and one can only say that their broad character should be somewhat simi- 

lar to that of the first "pure" shock. It can then be argued that the maxima in the 

14 GHz data separated by about 104 s are from the secondary shocks. 

Linear polarization in the Cir X-I radio flares at 6 cm has not been detected 

[2]. Theoretical calculations [25] indicate a net linear polarization of the order 

of 60-70 per cent for synchrotron radiation in a uniform magnetic field. This degree 

of polarization is usually not found in astrophysical sources. In Cir X-I the reason 

may be Faraday depolarization within the compact star's sphere of influence where 

the electron and ion densities are particularly high, or perhaps a turbulent compo- 

nent in the magnetic field (which reduces the degree of polarization by a factor 

B~nJform/(B~nifor m +B~urbulent))" 

(ii) Quiescent Radio Emission 

After the compact star passes periastron it possesses a replenished accretion 

disk which gradually "dribbles" down on to the star's surface [ 37]. Two effects can 

give rise to a steady radio flux during this part of the Orbit. First, some of the 

electrons accelerated by the outward blast phase of the shock leak out on to field 

lines, which connect to the disk. Since the fraction of electrons leaked to the disk 
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from the shock is less than unity, and further, since the distance of the disk from 

the underlying compact star is of the order of 109 to i0 I0 cm, the effective magnetic 

field in which they find themselves is weaker than during periastron passage. The 

quiet radio flux should be significantly less than the flaring flux near periastron. 

The precise radio output is manifestly very model-dependent. 

A second possible cause for the quiescent radio spectrum is that as the accretion 

disk co-rotates with the compact star the magnetic field of the underlying star is 

itself capable of energizing electrons and protons [29]. In this case too the out- 

put radio spectrum depends on the detailed model. 

Either way a roughly steady level of radio synchrotron emission should be main- 

tained throughout most of the orbit of the compact star. Its spectrum will be S 

-(F-I)/2 for an injected particle energy spectrum N(E) ~ E -F. For F = 2 the spec- 

tral shape is S ~ V-0"5; -0.48 is observed [2]. A particle energy spectrum with 

F = 2 is in accord both with Bell's [22,23] acceleration mechanism and with the van 

der Laan [40] results for expanding radio-emitting shells applied to Cir X-I. 

VIII SUMMARY OF THE MODEL 

Circinus X-I most sharply delineates the physical processes occuring in X-ray 

binary systems. By collating data covering a wide range of the electromagnetic spec- 

trum we have produced a comprehensive theoretical picture which accounts for aZZ of 

the currently available information. The main points of our theoretical explanation 

are given here. In particular, we concentrate on the major phenomena seen in the 

radio band, which have yielded significant insight into the behaviour of Circinus 

X-I. A full explanation of all of the X-ray, optical and radio data is presented 

elsewhere [41]. The model predicts effects which should be observable over the next 

few years. 

x-ray, optical and radio data [1,3,4,6-9,15,41] indicate that Cir X-I is a bin- 

ary star system l0 kpc distant [13,15] with a period of 16.595 d and an orbital eccen- 

tricity e z 0.72. To explain the observed radio bursts from Cir X-I we suppose that 

Roche lobe overflow from the primary star occurs only around periastron, triggering 

at least one expanding luminosity-driven shock from the compact star's surface [41]. 

Synchrotron radiation from energetic electrons at the shock front is sufficient to 

account for the temporal and frequency structure of the radio outbursts [ 41]. The 

increased optical emission [3,4,41] seen simultaneously with the radio bursts seems 

to be accounted for by the increased Roche lobe surface area near periastron [41] 

and degradation to the optical and UV bands of high energy photons produced at the 

shock. The drop in X-ray emission at this phase is caused by absorption of the X- 

rays in the strong stellar wind of the primary OB supergiant. 
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Figure 4 sketches the behaviour of the X-ray, optical and radio emission through- 

out one orbital period. Measurements of the periodic radio flares [1,2,14]; indicate 

the following general characteristics of the radio bursts. 

(a) The flaring radio source is a point source (~40" arc diameter) coincident in 

position with both an early-type emission line star and the X-ray source [1,2]. 

(b) High frequency radio flares, of peak flux density ~2 Jy at 14 GHz, are often 

double-humped and occasionally triple-humped, and always occur after the X- 

ray cut-off [41]. Humps are typically ~i0 h wide and separated by ~18 h. 

(c) In the steep part of the radio flare spectrum [41] the flux density is S 

5/2 _ arguing for an optically thick synchrotron emitter with a power,law 

distribution of electron energy. At periastronoptical depth unity occurs 

around 1 GHz [1,41]. 

(d) The time lag At from X-ray cut-off to the first peak of the radio flare at 

frequency ~, satisfies [2] At = -0.8±0.1. 

(e) The radio flare intensity of first maxima satisfies [2] S ~ ~i.0±0.2. 
max 

(f) The radio spectrum of the quiescent source satisfies [2] S ~ 0.3(~/5 GHz) -0"5 
±0.05 

Jy. 

Consider now the theory. To explain the rapidity of the drop in X-ray emission 

(~ 0.i d) [9-11] by absorption in the stellar wind requires [41] e z 0.8±0.1. The 

pre-flare increase in the 5 GHz radio flux is attributed to mass accretion from the 

primary star's stellar wind [2] and this yields a similar value, e = 0.72±0.01 (but 

see Lecture II). The primary star is probably [3,4,7,14] a massive (Mp z 20 M G) OB 

supergiant losing mass at a rate [17,27,42] of about 10 -6 MQ yr -I, via a strong stel- 

lar wind. The companion star is probably a compact star [ 3,4,7,14] (M c z 1 M G) , most 

likely a neutron star. 

From these masses, and the period, the semi-major axis of the orbit is ~I A.U. 

With e z 0.72 the apastron and periastron distances are ~2 and ~0.i A.U. respectively; 

physical processes that are essentially "steady" in low-eccentricity X-ray binary 

objects become highly dependent on the orbital positions of the stars. The compact 

star (radius ~106 cm) approaches within ~1012 cm of the surface of the primary star 

(radius ~1.5 x 1012 cm) during periastron passage, which lasts about three days. Dur- 

ing this time the mass transfer rate due to Roche lobe overflow from the supergiant 

exceeds [27-29] 10 -8 MQ yr -I, the Eddington limit for a 1 M 8 compact star. On impact 

at the surface of the compact star a flux of high,energy photons (~1038 erg s -1) is 

generated in a time much less [ 28,29] than the free-fall time (~104 s). Radiation 

pressure pushes outward on the infalling material (whose density varies ~R -3/2, with 

R measured from the compact star). This creates [ 41] an impulsively-driven shock 

wave whose radius at time t (s) after formation is given by Rshoc k = 3 x 109 t 4/7 cm. 

The shock thickness is ~CTcompto n ~ 3 x 106 cm. 
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The ion-electron collision time is about 10 -2 s, approximately independent of 

distance from the compact star, so that the electrons rapidly reach the ion tempera- 

ture. The electrons are then relativistic, with ~ ~ kTe/meC2 z 3 x 102. From the 

observed flux density (2 Jy at 14 GHz) the radio brightness temperature at wavelength 

I (cm) is T B z 1013 12 (i011 cm/d) 2 K, where d is the size of the emitting region 

which we take to be Rshoc k. To account for the observed radio brightness, electron 

energies corresponding to y z 103-105 are therefore necessary. Bell's [22,23] mecha- 

nism for rapid acceleration of charged particles at shock fronts appears appropriate 

for Cir X-l, providing an efficient way of boosting already energetic electrons to 

the required energy without straining the overall energy budget. The mechanism pro- 
-F 

duces an electron energy distribution ~ E (F ~ 2) which can be maintained for appro- 

ximately one collision mean-free-path (~3 x 108 cm) ahead of the shock. Synchrotron 

radiation is produced at the shock front in the compressed magnetic field of the super- 

giant. (The field is "frozen-in" to the material infalling through the Roche lobe). 

The X-ray component is absorbed in the stellar wind; any optical component [ 28] just 

adds to optical emission arising from the increased Roche lobe surface area near peria- 

stron. However, in the radio band synchrotron self-absorption effectively "blocks" 

radiation until the shock wave expands to the point where the material becomes trans- 

parent. Following van der Laan's [40] argument, the radio flare is then to be seen 

first at the highest frequencies. With the maximum of the spectral curve at fre- 

quency ~i at time tl, the maximum reaches V 2 at time t2, where [41] 

(~i/~2) 7(4 + F)/4(4F+ 6) 
t2/t 1 

and Sm~x(t2)/Smax(tl ) = (t2/tl)-4 (7F+3)/7 (F+4)=(~2/~I)(7F+3}/(4F+6) 

The change of spectral shape with time gives the time lag At ~ -m, where m = 7/4(F+4)/ 

(4r+6) ~ 0.75 for F = 2. Thus S max ~ n with n = (7F+3)/(2F+3) ~ 1.2 for F = 2. 

Observations [2] give m z 0.8, n z 1 based on the first maxima at 8 and 5 GHz (see 

(d), (e) above). In the optically thick radio regime the theory [41] gives S = 5/2, 

as is observed [8] (see (c) above). 

The dynamical pressure of the OB supergiant's stellar wind exceeds the shock wave 

pressure when Rshoc k > 1012 ~ cm, i.e. at about 2 x 104 s after shock wave formation. 

The shock then dissipates in the stellar wind (but see Lecture II for further details) . 

The duration of Roche lobe overflow near periastron passage is about 105 s, so there 

is ample time for more than one such shock to form. This explains the usually obser- 

ved [1,2] double-humped, and occasionally triple-humped [5] high-frequency radio fla~ 

res. 
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APPENDIX 

Here we discuss processes possibly associated with the expanding shock front 

model which do not basically change the model formulated in the paper. These proces- 

ses are discussed in the context of the model. 

(a) BREMSSTRAHLUNG RADIATION FROM NEAR THE SHOCK FRONT 

The bremsstrahlung spectrum produced by a relativistic electron colliding with 

the surrounding plasma existing 1 mfp ahead of the blast wave is given by 

6 2 3 2 -3 -i 
Ibrems = 16nenie ~nAbmin/3meC v Tcoll ~ erg cm s (Hz) 

(in ~ < yV/bmi n) 

where the collision time Tcoll ~ Ti/n i v x (2 x 10 -6 ) s, and bmi n z ~/meC. This cor- 

responds to a power output (for v = c) in the form of bremsstrahlung photons of 

Pbrems -~ i0-42n2 erg cm -3 s -I 

From the relation for the synchrotron power radiated by a relativistic electron we 

have 

_~ e 4 2 2 3 z i0~24 2 2 
Psynch 2ne Y /3meC (~y/105~ (IB/10-6) ne" 

Bremsstrahlung radiation only becomes significant (Pbrems ~ Psynch ) if n 

(y/105) 2(B/10_ 6 gauss) 2 cm_3 e 

exceeds 1018 

However, we are interested in radiation production only when the shock radius 

exceeds R z i0 I0 cm, at which point the number density under free-fall conditions 
s 2 -3 

is n e ~ 1011(Rp/~las t) ~ 1015 cm Hence bremsstrahlung is a negligible contribu- 

tion to the total radiation output. 

(b) CURVATURE RADIATION NEAR THE SHOCK FRONT 

In the vicinity of the compact star (Bsurfac e ~ 1012 gauss) particles will be 

strongly constrained to follow the field lines as the shock front expands. 

A relativistic distribution of particles (electrons) exists within one mean-free- 

path of the expanding shock front - virtually no particles exist behind the shock 

(i.e. closer to the neutron star), for photon collisions immediately force them ahead 

of the shock. As the particles move out along the field lines they produce curvature 

radiation at angular frequencies ~ ~ (c/p)y 3 (p is the radius of curvature of the 
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• (c/p) 2. magnetic field) with a peak emission at ~ z Observations at ~ ~ 2~ 15 GHz, 

and, taking y ~ 103-105, imply that curvature radiation with p ~ 3 x 105-3 x 109 cm 

may exist. Inverting the problem: taking p ~ 3 R c z x 106 cm and noting ~observed 

2~ x 15 GHz implies ~ z 3 x 103 . Note that ~ is not very sensitive to the assign- 

ments of ~ and p (varying only as the square root) but that ~ and p are sensitive to 

the assignment of ~ (varying as the square). 

To produce the high brightness temperature then requires a bunching of theout- 

ward moving electrons by a clumping factor ~(TBk/YmeC2) ½ z (1015 k/103 m e c 2 ) 
½ 

i0. 

Theoretical arguments [43-46] have already been put forward for producing bunching 

factors well in excess of i0 in order to account for pulsar emission. 

The difficulty with the application of the coherentcurvature radiation mechanism 

to account for the radio emission from Cir X-i is the observed lifetime of the radio 

bursts - typically 104 to 105 s. Coherent radiation could, at best, be produced along 

the expanding shock only (a) as long as the shock finds itself in a region of strong 

curvature of the magnetic field, and (b) for the time a clump of electrons can hold 

4 cm , so to cover itself together. Now the shock speed is ~ ~last/t z 109 t -3/7 s -I 

a distance ~i0 R N { l07 cm takes about 10 -4 s. Since the relativistic particle popu- 

lation can be maintained at best about 3 x 109 cm ahead of the shock (one mean-free- 

path) the longest time for which curvature radiation can be produced is about i0 -I s. 

(c) COLLISIONAL EFFECTS IN THE PLASMA - SCALE SIZE COMPARISON 
2 . 

The cyclotron radius of an electron of energy TmeC zn a uniform magnetic field 

B is R c ~ YmeC2/eB z 2 x 1014 (~/I05)(I0-6/B gauss) cm. For parameters relevant to 

Cir x-l, the mean-free-path of a relativistic electron ahead of the expanding shock 

is lmfp z 3 x 109 cm. Thus an electron only makes ~10 -5 of a cyclotron orbit before 

it is scattered by collisions. However, the requirement that the synchrotron output 

be essentially unmodified by collisions is Rc/y2 ~ Imfp, which translates into (y/105) 

(B/IO -6 gauss) 10 -9" 

(d) STIMULATED EMISSION 

This paper concentrates on a mechanism for the production of energetic particles 

at an expanding shock front to explain the radiation from Cir X-I. However, we must 

not neglect the possibility of enhancement of synchrotron emission by plasma instabi- 

lities. Such instabilities could provide negative absorption coefficients for the 

radiation. We outline one such possibility here. 

The brightness temperature T b in the emitting region of a plasma is given by [25] 
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T B = !6~3cE(~)/k(~n/c) 2 , 

where e(~) is the energy density stored in fluctuating modes of the plasma and n is 

the refractive index. For a monoenergetic electron beam plasma in a uniform magnetic 

field, Davidson [47] gives the quasi-linear asymptotic behaviour in ~ ~ 2~LY(n2-1)-i 

(me c)2~b2 ~L 3 

8~e2(n2_l)~L 
(~) -~ 

[ ¢n2-i) y+WL/~ ] 

[ (n2-1) yl2+0JLl~] [3 (n2-1) y/2+0JL/0J ] 

in co > 2~LY(n2-1) -I 

2 2 
where ~ _ = 4wn e /m , ~ = eB/m c and n b is the number density of relativistic elec- 

b e 2 L 1 e 
trons. In ~ ~ 2~L(n--l)-- , 

(E,/meC2) e(~) = 0, 

2 
where E, £ meC y. 

Hence 

22522 2 225 
T b - [(47 meC ~b~L)/(3k(n -l) e ~ )] (meC2/E ,) 

with n 2 being provided by a background (i.e. non-beam) plasma such that n 2 z 1 - 2/ 2 
P 

Thus 

T b = (4~2m~c 5 (nb/n p) W~) (3ke 2 (E,/me c2) ~ ~). 

For y 103 to 105 , B = 10 -4 gauss, and estimating nb/n p ~ I0 I0 we have 

T B = 3.1011(nb/105np) 2(B/10-4 gauss) 2(109/~)2(105/~) (3.1012/nb) K. 

Brightness temperatures of ~1015 K may then readily exist. 

Suppose it is considered difficult to obtain selective acceleration of particles 

at the shock front to the required energies to account for the high brightness tem- 

perature of Cir X-I during a flare; nevertheless mechanisms of the type outlined above 

exist to enhance the brightness temperature by selective plasma processes. At the 

present stage, to invoke such processes introduces further unknown parameters into 

the model. In this first attempt to model the behaviour of Cir X-I we prefer to res- 

trict the discussion to conventional single particle radiation mechanisms. Presumably 
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a more detailed model attempting to account for the radiation should allow for such 

collective plasma processes - as has been done for pulsar emission models. 
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ABSTRACT 

Simultaneous radio and X-ray observations of the flare from Circinus X-i on 
1978 February 1-5 are reported and then accounted for within the frame work of t~e 
basic physical picture given in Lecture I. The latest data hone the parameters 
detailing the basic physical processes occurring. 

The 5 GHz radio data are used to derive an orbital eccentricity, eccentricity, 
e = 0.72-+0.01 for the Cir X-I binary system. Observational evidence is presented 
here for both stellar wind and Roche lobe overflow accretion of matter on to the 
compact star. The steady-state stellar wind mass loss from the OB supergiant is 
estimated to be some 5 x 10 -6 MQ yr -I, 3.5 x 10 -8 M~ yr -1 but only lasts ~2-3 d 

-- -- - i 0  near periastron. The corresponding mass loss is some i0 M@ per orbit. For the 
first 0.5 d of this time, before Roche lobe overflow commences, stellar wind accre- 
t/on dominates the mass transfer. Temporal ephemerides for periastron in the orbit 
are estimated using both the radio data and the X-ray data. Very close agreement is 
found, the ephemerides differing by only 0.05 d. The X-ray cut-off time on 1978, 1st 
FeBruary agrees well with the estimated time when stellar wind mass transfer first 
generates enhanced radio emission at 5 GHz. Our model for Cir X-l, used in conjunc- 
tion with the 5 GHz data, yields a period for the orbit of the compact star round 
the primary star. The shape of the radio light curve towards the end of the flare 
gives insight into the physical conditions in the radio emitting region when mass 
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transfer by Roche lobe overflow abruptly ceases. 

Our model for Cir X-I is extended in this paper to include: (i) effects caused 
by libration of the orbit of the binary system, which results from the primary star's 
spin axis being inclined to the orbital angular momentum vector; (ii) variations in 
the X-ray and radio flare light curves caused by a bulge in the rotating OB supergiant. 
These effects are discussed in terms of the available observations. We also speculate 
on the possibility of seeing periodic V-ray bursts from Cir X-l, and on a possible 
origin for the Cir X-I system. 

I INTRODUCTION 

Circinus X-1 (R.A. (1950) 15h16m48s.3, Dec. (1950) -56 ° 59'14") provides a unique 

insight into the physical processes occurring in young, binary X-ray stars since 

processes that would be essentially "steady" in low eccentricity systems are now highly 

dependent on relative orbital position. The 16.6 d periodic emissions in the X-ray, 

optical and radio bands are evidence compelling the adduction that Cir X-I consists of 

a compact star (Mc -~ MS) moving in an orbit of high eccentricity (e = 0.8) around an 

OB supergiant star (M P ~ 20 S ) [1-5]. 

A basic model explaining the behaviour of Cir X-I has been discussed in Lecture I. 

Predictions are that observable changes in the characteristics of the emission from 

Cir X-I are to be expected on a time scale of 5 to i0 yr. It is therefore important 

to monitor Cir X-I frequently over as wide a part of the electromagnetic spectrum as 

possible. Here we report our most recently acquired data for the flare of 1978 February 

1-5 and discuss resulting implications for the model. 

The X-ray results in the 3-6 keV band were obtained using the all-sky monitor 

(ASM) on the Ariel 5 satellite. 6 cm radio data were acquired using the 64-m telescope 

of the Australian National Radio Astronomy Observatory at Parkes and the 26-m telescope 

of the CSIR Hartebeesthoek Radio Astronomy Observatory near Johannesburg. The radio 

data are presented in Section II and the X-ray data in Section III of the paper. 

These new results are discussed in Section IV in terms of our theoretical model. 

The new data not only confirm our understanding of the basic physics involved but 

considerably refine the parameters describing the processes at play. 

II RADIO OBSERVATIONS AT 5 GHz (6 cm) 

Two telescopes operating at a frequency of 5 GHz (A = 6 cm) were used to monitor 

the radio emission from Cir X-I between 1978 February 1 1515 UT and 1978 February 5 

1030 UT. The Parkes 64-m telescope and the South African 26-m telescope 'monitored the 

5 GNz radiation for a total of ~19½ h per day throughout the flare. 

The intensity of Cir x-i as measured from Parkes over the days February 1-3 is 

shown in Figure i. The total error in the datum flux points is typically 1% propor- 
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tional error together with a random error of ±18 mJy. We have plotted an error of 

±24 mJy as representative on each Perkes datum point. 
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Fig i. Radio emission from Cir X-I at 5 GHz, 1978 February 1 to 4. Plot combines 
data from Parkes (Australia) and Hartebeesthoek (South Africa). The "front 
porch" is the data preceding 1978 February 2.1. X-ray phase zero is marked 

At the Hartebeesthoek Radio Astronomy Observatory Cir X-I was observed from 1978 

February 2-8. The South African data are also shown in Figure i. We have shown the 

error, typically 200 mJy, on each Hartebeesthoek datum point. 

The South African data have been normalized to agree with the Parkes measurements 

of 1978 February 3 near 0100 UT. Simultaneous observations from both sites occurred 

for 2% h on this date. The normalization process also gives a good match between the 

datum sets of February 2 and February 3-4. 

A number of interesting features appear in Figure 1 and we list these below in 

preparation for later discussion (Section IV) of the physics underlying the flare's 

temporal structure. 

(i) A gradual increase in intensity is observed between February 1.6 UT and 

February 2.05 UT which differs markedly in form from the flare structure 

which follows; we call this the "front porch" emission. 

(ii) More than a single peak occurs during the flare; peaks appear near February 

3.0 UT, February 3.2 UT and February 3.6 UT. 

(iii) The "tail" of the flare, if fitted with an exponential, has a decay time of 

about 10-12 h. 

(iv) The radio flare at 5 GHz effectively ended by February 5.6 UT. The Harte- 

beesthoek measurements between February 5.6 and February 8.0 give a constant 

value for the quiescent radio source flux density of 0.3 Jy, as measured 
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previously [2]. 

III X-RAY OBSERVATIONS 

In the 3-6 keY energy range the X-ray data were obtained using the ASM system 

on Ariel 5. In Figure 2 (a) we show the observed photon counts from the ASM averaged 

into 0.5-d bins. Octant mode results in Figure 2 (b) show the temporal relationship 

between the observed radio and X-ray flares. 
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(a) X-ray emission 
from Cir X-i from 
the Ariel-5 all-sky 
monitor. Data have 
been averaged to 
0.5 d resolution. 
A dip occurs at the 
predicted moment 
of X-ray phase zero, 
with enhanced emis- 
sion for the four 
following days. 
(b) Octant mode res- 
ults for soft X-ray 
emission from the 
Ariel-5 satellite, 
The time of X-ray 
phase zero is mark- 
ed by a dashed line. 

The predicted X-ray cut-off times (or transitions) are shown dotted. These 

are based on the ephemeris given by Kaluzienski and Holt [6]. Two important effects 

are to be noted from the X-ray data presented in Figures 2(a) and (b): 
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(i) The X-ray cut-off predicted for 1978 January 15.92 UT seems not to have occurred 

until about January 18.4 UT - some 2½ d "late". Alternatively, arguing that 

the reduction in intensity near January 15.8 do88 indicate a cut-off implies 

that enhanced emission occurred immediately after the cut-off and lasted for 

~2 d before the X-ray intensity from Cir X-I dropped again. 

(ii) The "0ctant" mode measurements definitely indicate that an X-ray cut-off 

occurred near the expected transition on February 1.52 UT. However, enhanced 

X-ray flaring recommenced 0.5 d later. 

It is clear that the 1978 X-ray light curves through the 16.6-d period vary 

markedly from those observed in 1976-77. In section V we discuss the implications of 

the X-ray data for our model of Cir X-I and show that the current results are in agree- 

ment with the theory. 

IV THE MODEL FOR CIR X-I 

In Section V we consider the model of Cir X-1 together with the observations 

discussed above. But first we precis the main points of the "shock-expansion" model 

of Lecture I and add some secondary facets to the basic model. 

(a) PRECIS OF BASIC MODEL 

For a full discussion of the basic model for Cir X-I the reader is referred to 

Haynes et al. [7] and to Lecture I. Here we shall outline the important physical 

aspects so that we can then incorporate a few more details in order to account satis- 

factorily for the latest 5 GHz radio and the X-ray measurements. 

= 1.5 x l012cm) Cir X-I is a binary system, consisting of a massive (Mp ~ 20 MS, Rp 

OB supergiant losing mass at a rate of ~10 -6 M@ yr -1 via a strong stellar wind. The 

companion star is probably a compact star (Mc = M0' Rc ~ 106 cm) , most likely a neutron 

star; however, we cannot yet preclude a black hole as a possible companion to the super- 

giant on the basis of the available data. The period of the orbit of the compact star 

around the supergiant is 16.59 d. 

TO explain the shape of the observed 3-6 keV X-ray light curve of 1976-77 by 

absorption of the X-rays in the stellar wind of the primary star the orbital eccentri- 

city must be close to e ~ 0.8. From the orbital period and eccentricity, and the 

masses of the two stars, it follows that the apastron and periastron distances are ~2 

and 0.1 AU respectively (i AU = 1.5 x 1013 cm). The tidal interaction between the two 

stars, separated by ~1012 cm at closest approach, will vary markedly throughout the 

orbit. During periastron passage, which lasts for about 3 d, the mass transfer rate 

due to Roche lobe overflow from the supergiant will exceed l0 -8 M 0 yr -I, the Eddington 

limit for a 1 M@ star [8]. At impact on the compact star a flux of high energy photons 



215 

(~1038 erg s-l) is then generated which pushes outward on the infalling matter. Taking 

R-3/2 the density of the infalling matter to vary as (with R measured from the compact 

star) an impulsively-driven shock wave is created whose radius at time t (s) after 

formation is given by Rshoc k = 3 x 109 t 4/7 Cm. The shock thickness is = 3 x 106 cm. 

A suitable mechanism for the production of synchrotron radiation in the vicinity 

of the shock has been discussed in Lecture I. As we shall not be discussing the radio 

spectral characteristics further in this lecture the reader is referred to Lecture I. 

It suffices to note here that the model not only explains the radio flare structures 

previously observed [2] between 1.4 and 14 GHz, but also specifies the evolution of 

the radio spectrum through a flare. 

Shocks dissipate in the strong stellar wind of the OB supergiant when Rshoc k 

1012 cm, i.e. at about 2 x 10 4 s after shock formation. Periastron passage lasts 
5 

however for about i0 s so more than one shock can form - presumably the reason for 

the multiple radio peaks. 

We suspect that the compact star has an accretion disk. As the disk's angular 

momentum dissipates, matter drains out of the disk on to the underlying star generating 

a 8te6a~y X-ray luminosity of 1035 to 1038 erg s -1 Accretion disk replenishment occurs 

near periastron at a rate of ~5 x 10 -8 to 5 x i0 -I0 M@ per orbit. The varying X-ray 

light curve is then produced by the variable absorption in the strong stellar wind of 

the supergiant. Some of the relativistic electrons in the shock leak into the accre- 

tion disk. These will give rise to optically thin synchrotron emission when the 

compact star is away from periastron. This so-called "quiescent" radio emission is 

seen to follow a frequency dependence of -0.5, where ~ is the frequency, in agreement 

with our model for Cir X-I. 

Enhanced optical emission results both from degradation of the X-rays to the 

visible part of the spectrum in the strong stellar wind and the infalling Roche lobe 

material near periastron passage, and from the increased surface area of the Roche 

lobe occurring at the same time. 

(b) ADDITIONAL PHYSICAL DETAILS 

In the "shock expansion', model for Cir X-I, reviewed above, we discussed the 

generation of radio emission as a result of mass accretion on to the compact star at 

a rate greater than the critical rate of ~10 -8 M~ yr -1. We did not account in any 

detail for the flare decay curve (except to say that shocks dissipated at R 
shock 

i012 cm - implying that the radiation therefore diminishes). Furthermore, no detailed 

considexation was given of mass transfer via stellar wind accretion as an auxiliary 

mechanism for the generation of the radio flares. Finally, we ignored rotation of the 

supergiant star in discussing the dynamics of the Cir X-I binary system (except in so 
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far as we mentioned orbital libration). 

Clearly, some additions to the model are desirable. The data now available 

from the 1978 February 1-5 flare (see Sections II, III) in fact hold clues to how 

these additional phenomena are to be fitted within the underpinning physical frame- 

work. 

We first consider mass accretion on to the compact star at a rate less than the 

Eddigton limit for a 1 M@ star. A derivation is then presented of an approximate 

relationship between the mass transfer rates due to Roche lobe overflow and stellar 

wind accretion respectively and the observed radio flux density in a flare. Finally, 

theory for the decay curve of the radio flare is presented, and then the dynamics of 

the binary system is reconsidered. 

(i) Modes of Mass Accretion 

The stellar wind has a number density n as a function of distance R from the 

star with: 

n = 1011(n,/1011cm-3) (Rp/R) 2 cm-3 

where n, is the number density scale defined at R = R . The mass is captured at a 
P 

distance of 1012 cm from the compact star and free-falls to the surface in a time of 

order 2-5 x 104 s [7]. Because of collisions with ions, the electrons take on the ion 

temperature and become highly relativistic (y ~ 3 x 102) , giving brightness temperatures 

T b ~ 3 x 1012 K. Matter will be captured when 

2 
V O /2 = GMc/rca p 

where V 0 is the velocity of the captured particle, i.e. the stellar wind speed. The 

rate of stellar wind mass capture when the compact star is at a distance R from the 

supergiant is then 

= 47 r 2 m.nV 
cap cap l o 

2 2 -3 
-~ 167 G M c min,V ° (Rp/R) 2 

The total luminosity L generated by conversion to electromagnetic energy is 

L -~ GM c Mcap/Rc 

In the frequency band (~min 

time t is proportional to 

< ~ < ~max ) the flux density, Sg(t), at a distance d at 
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S~(t) ~ GM c 6 ~cap(t)/d2Rc(gma x - ~min ) 

where £, which may be a function of ~, is the efficiency of conversion to radio emission. 

Since the compact star moves in an elliptical orbit of semi-major axis a (~0.5 AU) 

around the supergiant it follows that with R = a(l-e cos ~), where e is the eccentricity 

of the orbit and @ the phase in the orbit, we have 

where 

S (t) = g A(~ - ~ )'id'2(l-e cos~) -2 , 
max mln 

A 16~ V -3 3 3 -i = o G M c R c min ,(Rp/a) 2 

Near periastron passage the compact star effectively forms a contact binary with 

the OB supergiant [7]. For these ~3 d a good approximation is that the stellar wind 

mass loss rate of the OB supergiant can be approximated by 

Thus 

<Msw > = mi4~n,R~V ° = constant 

A = 4~V-4R-IG3M3 a-2 <~ > 
o c c sw 

As a result of stellar wind capture alone we then expect a radio flux at frequency ~ of 

S sw (t) = g4~G3M3 (~ - ~min)-l<~ >V-4R-I (da)-2(l_e cos$) 
V c max sw o c 

-2 

We shall argue below that this situation is applicable for the first ~I0 h of the 1978 

February 1-5 flare. 

Radio flux will also be generated hy Roche lohe overflow of mass on to the compact 

star - considering a mass accretion rate greater than ~10 -8 MQ yr -I so that a luminos- 

ity driven shock forms. Most of the mass passing through the Lagrange point in the 

Roche surface is captured so that 

RL d-2R-i (~max - ~min )-I MRL (t) S~ (t) -~ ~ GMc c 

where MRL(t) is the instantaneous mass accretion rate at time t due to Roche lobe 

overflow. For the sake of simplicity we have taken the conversion efficiency e to 

photons to be the same as for solar wind mass loading. The calculations can of course 

be carried through with different efficiency factors in the two cases. This however 



218 

is a refinement which we have not thought necessary at this stage. If a flare lasts 

for a time 2At, and assuming b~h transfer mechanisms operate concurrently, then the 

total flux resulting from these two mass transfer mechanisms will be 

F = Fsw + FRL 

where 

and 

with 

I ddt 4gG3M 32At <Msw > [d2v4 Rc a2 (~max sw = sSW't" = c - x F ~ ~ ) Vmin)] -I 

-At 

< (l-e cos#)-2>, 

a RL -id-2 _ 
FRL = [ S. (t)dt = gGM R (Vma x ~min)-12At<MRL > 

~t v c c 

<M> = (2at)-1 I a Mdt . 

-At 

Thus 

<~sw > I<~RL> = (FsWFRL)V~ a 2 (4G2M~) -1 < (1-e cos#) -2>-1. 

With a stellar wind velocity V 0 = 5 x 107 cm s -1, a = 0.5 AU and e ~ 0.72 [7], this 

gives 

<~sw>/<~RL > = (FsWFRL) 630. 

If Roche lobe overflow does not occur in the same time interval as the stellar wind 

accretion and if two outbursts are seen in any one flare it follows that 

<~sw>l<~> -- 630 (Fsw/FR~)'" C1) [~tRL + A~ 2) ]I (2dtsw) • 

(ii) The Decay Curve of High-frequency Radio Flare8 

Earlier [9,2] observations of radio flares at 5, 8 and 14 GHz have indicated that 

radio flares last typically for about 2-3 d and decay with an e-folding time of ~10-15 h 

at 5 GHz. With the results of the 1978 February 1-5 flare to hand it is now appropriate 

to try and quantify the flare decay in terms of our underlying physical model. The 

theoretical work of Haynes et al. [7] was concerned with the generation of the radio 

flares not with their decay - except for the somewhat cryptic statements concerning 
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wave dissipation in the stellar wind. 

Let a shock front form as a result of Roche lobe overflow of matter on to the 

compact star. Accretion ceases when the compact star moves away from the OB super- 
/ 

giant after periastron passage. Consider the lastshock created. ~t will expand 

until the shock pressure is balanced by the stellar wind pressure (at least this is 

so in directions facing toward the supergiant). Then, roughly, we have 

nV 2  wVw 2 r s S 

where n s, Vs are the density at, and velocity of, the shock, and nw, V w the density 

and velocity of the stellar wind at the balance point. Below we shall discuss the 

effect of maintaining a pressure balance on only a part of the expanding shock. 

From the "shock-expansion" model of Lecture I, the shock radius R at time t 
s 

after shock formation at distance R 0 from the compact star is given by R = R 0 t 4/7 
s 

and the shock velocity is V s = (4~7)Rot-3~7 = (4/7) Ro(Rs/Ro )-3/4. Mass captured at 

a distance R* (approximately equal to a few times R ) from the primary OB supergiant 
cap p 

is swept up by the shock front, so: 

c 2 rcap Rs 3/2 = n, (Rp/R ap n s ) ( / ) 

Further, the capture distance from the compact star is 

R* -~ 2GMc/Vw 2 
cap 

Remembering that the solar wind density is =R -2, the pressure balance equation then 

gives 

Rs/Ro-~ R2/3[16 R½V-1 (2GMc)-½/49]1/3. 
o w 

Since the orbit is elliptical with semi-major axis a, eccentricity e and phase angle 

~, we have 

R = a (l-e cos~). 

For Cir X-I again we take a = 0.5 AU, R^ = 3 x 109 cm, V u w 
Thua 

1(112 R = 4 x (l-e cos~)2/3cm. 
s 

= 5 x 107 cm s -I 
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This relates the distance of the shock front from the compact star to the orhital 

position of the star at times when a pressure balance between shock expansion and the 

supergiant stellar wind occurs. 

Now the synchrotron emission S from an expanding cloud of radius R of relativistic 
s 

electrons with energy s p e c k " u r n  N ( E ) d E  ~ E ~F dlg i s  p r o p o r t i o n a l  t o  R n [ 1 0 ]  , 
s 

where n = c-d-b(F-1) - a(l+F)/2, 

and a, b, c, d describe the energy loss or gain processes occurring in the plasma [ii]. 

A large number of different combinations of the a, b, c and d parameters will satisfy 

a given observation of a flare decay. In y(b)(iii) we shall discuss values of a, b, 

c, d "favoured" for Cir X-I in attempting to describe the observed flare decay of 1978 

February 3-5. 

Consider now the component (~½) of shock surface expanding in the flow direction 

R* of the solar wind. Once its radius exceeds about little material remains to be 
cap 

swept up. Further, the solar wind cannot exert a balancing pressure to "hold" the 

shock front. The shock then freely expands, conserving momentum (~pVR 3) in the manner 

described by Woltjer [12]. For R > R* we then have R = R* (t/t )%, where t 
s ~ cap , s cap , cap 7/4 cap 

is the time at which the shock radius reaches R , i.e. tca D , (R /R_) " . With 
9 cap ~2 cap u 4 

R^ = 3.10 cm and R* approximately equal to a few times 10- cm, t ~ (3 x i0 s 
u _ cap cap 

to i0 b s) after the shock was formed, i.e. 0.3 ~ 1 d. 

Thus for the last "clean" shock about 50% of the flux should rapidly disappear 

about a day after the flux first becomes visible. The temporal behaviour of the 

remaining flux should then follow S ~ (l-e cos#) +2n/3.- 

Prior to tcap, but somewhat after the point where the material overlying the 

shock turns optically thin to 5 GHz radiation, rough dynamical balance is rapidly 

being achieved, since the infalling mass has essentially the solar wind velocity when 

0(Rca p). Thus for R < R'cap we also expect S = (l-e cos )2n/3 Rs s ~ , with S about2n/3 

twice the value it has just after tca p. Alternatively we expect S ~ (l-e cos~) 

at all times after rough dynamical balance is achieved, with a sudden drop, in S (by 

about a factor 2) expected to occur at t ~ t ~ 0.3-1 d. 
cap 

(iii) Effect8 Due to Rotation of the Primary Star 

In our previous discussion of the dynamics of Cir X-I [7] we did not incorporate 

~_he effects of a rotating supergiant. Three effects caused by rotation of the OB 

supergiant are inunediately apparent: (a) a stellar "bulge" peaking at the spin equator 

of the primary; (b) a distortion close to the primary of the spherical symmetry of the 



221 

stellar wind's R -2 density distribution; (c) a libration of the orbital plane caused 

by misalignment of the stellar spin axis and the orbital angular momentum vector. 

(It is highly unlikely that the spin axis of the supergiant is precisely aligned with 

the orbital angular momentum vector.) 

We are interested in observational consequences of these effects. Consider each 

in turn. 

(a) Observational Effects Due to Stellar Bulge 

Let the OB supergiant rotate with angular velocity ~ (spin period P = 2~/~). 
s 

For simplicity take R ~2 << G /R 2 M so that distortion effects can be treated as 

perturbations. More pextensive PcalculationsF with Rp ~2 comparable to S Mp/R 2 could 

be carried through but we do not believe that at this stage in our development and 

understanding of the basic physics this is either a pertinent or worth while pursuit. 

The small ~ case suffices to illustrate the major points. For R = 1.4 x 1012 cm, 
P 

20 M@ the restriction R ~2 << G M /R 2 implies P >~ 2.105 s = 2 d. The moments Mp p p p s 

of inertia of the star parallel and perpendicular to the spin axis differ by a 

fractional amount of about ~2 --R:/GMD corresponding to equivalent polar and equato- 

rial radii in the rough ratio 

Rpole/Requato r = 1 - 0(i) ~2R3/G% -~ 1 - 0(I) (id/P s )2 , 

where 0 (i) is a numerical factor of order unity whose precise value depends on the 

density variation throughout the star. For a spin period of less than a few days 

there is considerable flattening of the star since __RDole/Req is then less than 

about 0.5. 

Now we have already pointed out that the compact star passes extremely close 

to the primary supergiant, causing Roche lobe overflow. Because of orbital libration 

the compact star will pass the primary at periastron at a latitude of the primary 

star varying systematically per orbit from the stellar equivalent of the Tropic of 

Cancer, through the Equator to the Tropic of Capricorn and back. Thus the compact 

star systematically and periodically varies its periastron position relative to the 

primary's stellar surface. 

Thus, apart from short-term irregular fluctuations, we expect to see a periodic 

variation in flare intensity with a period of half the orbital libration period. 

An accurate estimate of the relative flare intensities at maximum and minimum is 

difficult to make since a detailed model for the rotation of the OB supergiant has 

first to be constructed and then taken into account in a precise model of Roche lobe 

overflow. This is a daunting task. 
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(b) Observational Effects Due to the Asymmetric Stellar Wind 

Rotation of the primary OB star will distort the spherically symmetric R -2 

dependence of the stellar wind at points close to the star. We have already seen 

that steady high mass loss rates of OB supergiants (~10 -6 M@ yr' 1 [13]) imply a 

strong stellar wind in the vicinity of the supergiant. A detailed, numerically 

accurate, dependence is again difficult to obtain. We can say that since the 

"front porch" emission is a direct consequence of solar wind mass loading it too 

should show a systematic period variation with ~If the orbital libration period. 

Again this is due to the oscillatory motion of the compact star's orbit relative 

to the spin equator of the primary star. Short-term irregular fluctuations can be 

present owing to variable stellar wind speed and density, but underlying these 

variations of the "front-porch" emission should be the slow periodic effect. 

(cJ Orbital Libration 

The orbital dynamics have to be extended to include libration of the orbital 

plane of the compact star resulting from the interaction of the misaligned spin 

axis of the primary star and the orbital angular momentum vector. Let ~ be the 

misalignment angle. A fundamental periodicity related to the spin rate of the 

primary and the orbital period (~16.6 d) must be expected on this model and such 

an effect should be searched for. The possible period of ~220 d discussed by 

Davison and Tuohy [14] may be this periodicity. 

We outline below s~e of the basic physics of the libration e~ected for Cir 

X-I. 

First the amplitude of orbital libration is just sin i where i is the projected 

angle of the orbit on the celestial sphere (for an orbit with i = 0 in the absence 

of rotation). By measuring the variation of the soft X-ray intensity shape over a 

large number of flares it is then possible, in principle, to separate the effects 

due to stellar wind absorption and orbital precession from effects due to orbital 

libration. An estimate of the rocking angle of the orbit, which is directly tied 

to both the misalignment angle, ~, and the spin rate of the star [15] can then be 

obtained. It is not clear how many X-ray light curves are needed to do this. 

Now the orbital angular momentum vector perpendicular to the orbital plane 

has magnitude L ~ aMc[2GMD/a(1-e)]~; while the primary has a spin angular momentum 

of magnitude S -~ M R ~/5. 
PP 

With tan 8 = L sin ~/(S+L cos ~) it can be shown, [15],that 

sin i = k sin 8 
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whe r e 

k = (~ + M )3/2 G½S/2M M a 7/2 ~2 
c pc 

= (Mp/20~Mc) (Rp/a) 2 (Pspin/Porbit) . 

For M = 20 MQ, a = 0.5 AU, e = 0.72, M = MQ, R = 1.4.1012 cm we have S/L 
-2 P c p 

3.10 /(Ps/ld). Hence, unless ~ = W/2 - corresponding to the spin axis of the 

primary being in the plane of the orbit - we have @ = ~ We also have k z 2 xlQ "4 

(Ps/id). Then 

sin i = 2 x 10 -4 sin ~ (P /id) = i. 
s 

Likewise, the libration period Tli b is given [15j to lowest order in an expansion 

in ~ by 

Tli b = GMp PR -3Ps3~.2(l+k)-l(Mp/Mc + i) 

= 2(Ps/id)3[l + 2 x 10-4(Ps/id)] -I d 

If we accept at face value the observational inference [14] of a periodicity 

of ~220 d, then this is one-~f of the libration period, implying P ~- 6.5 d. 
s 

The corresponding tangential velocity of the primary's stellar surface is V = R × 
P P 

2~/P s ~ 150 km s -1. The fractional distortion of the stellar surface from a sphere 

is then about Rp 3 ~2/G Mp ~ 1/16. For comparison, note that the escape velocity 
-i 

from the surface of the primary star, is about 600 km s - close to an order of 

magniD/de larger than the surface spin speed so that material at the primary's 

stellar surface is still relatively tightly held by the gravitational force of the 

star. The rocking angle is about i ~ 6 sin ~ minutes of arc. 

If the statistical analysis of the observations [14] yielding the libration 

period should be modified significantly as more data are included then note that 

from the libration period we have 

(Ps/id) = 8[Tlib/lyr] 1/3, 

i = 10 -3 sin~ (Ps/id) rad, 

and Vp -~ 800 (Ps/id)-i km s -1, 



224 

All of PS' i and Vp are very insensitive to the precise value of Tli b, each varying 

only as the cube root. A libration period of ~i03 yr gives P ~ 80 d and V ~ 20 km 
-I s p 

s While it would, presumably, be difficult to currently measure effects directly 

ascribable to a Ylib > 102 yr, nevertheless, the point is that even a rough indica- 

tion of Tli b is sufficient to determine Ps fairly accurately. 

V PHYSICAL INFERENCES FROM THE DATA 

(a) GENERAL 

The 5 GHz radio flare from Cir X-I on 1977 May 12 showed a clear double-peaked 

structure, each peak lasting ~i0 h [2] . In contrast, the much weaker flare of 1976 

November i0 showed only a single peak [9]. There are possibly three peaks in our 1978 

February 7 flare data (see Fig. I), but the dips in intensity between the peaks are 

not well defined. The decay curves of all three of these 5 GHz flares from Cir X-I 

are of the same form but the peak 5 GHz flux observed from one flare to the next is 

highly variable. The shape of the onset of the 5 GHz light curve for the different 

flares also appears to be variable. Enhanced emission for the first ~10 h of the 1978 

February 2 flare is different in shape to the later flare structure. The model for 

Cir X-I must account for these observations. 

A well-defined peak is exhibited in the 3-6 keV band X-ray radiation from Cir 

X-I e~ery 16.59 d [6]. Flares monitored through 1976-77 showed that shortly after 

reaching a peak the X-ray radiation dropped (in less than 0.07 d) to a very low value 

each period and remained low for ~4 d before gradually rising agaih [1] - basically a 

~'saw-tooth" light curve. The latest X-ray results (Figs. 2 (a), (b)) do not conform 

to this pattern, as they show enhanced emission shortly after the expected cut-offs. 

Kaluzienski and Holt [6] first noted similar effects in their data and indicated that 

source conditions in Cir X-I may be returning to those existing at the time of the 

discovery of Cir X-I by the UHURU satellite in 1971-72. (The soft X-ray light curve 

was then basically eclipse-like in form.) The latest X-ray results confirm the change 

in the light curve. A model for Cir X-I must also then account for changes in the 

3-6 keV X-ray light curve on a time scale of 6 to 7 yr. 

(b) ~ADIO DATA 

In the discussion of the radio data we shall consider the flare as consisting of 

three main sections: (i) the "front porch ~' region - the first stage of the flare 

lasting for about i0 hours between 1978 February 1.6 UT and February 2.1 UT; (ii) the 

main outburst between 1978 February 1.2 UT and approximately February 3.6 UT; and 

(iii) the decay section between February 3.6 UT and February 5.6 UT. 

(i) "Front Porch ~' Region 

with the mass accretion rate producing the radio emission a function of the 

density in the stellar wind at each point in the orbit of the compact star around 
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the supergiant then (Section IV(b)(i)) 

-2 
S~(t) = (l-e cos~) 

The orbital phase, 4, of the compact star varies with time according to 

-esin~ = 2 p-l(t+AT) , 

where e is the eccentricity, P the orbital period, and AT the offset in time of the 

origin in the measurement from periastron, when maximum radio emission would be 

generated as a result of stellar wind mass accretion. 

The quiescent spectrum of Cir X-I is S = 0.3(9/5 x 109 Hz) "0"5±O"I Jy [2]. 

After removing the quiescent flux of 0.3 Jy from the results shown in Figure 1 a 

minimum variance technique was used to obtain a least-squares fit of (l-e cos:~) "'2 to 

the data (Fig. 3). The best fit gives e = 0,72±0.02 and AT = -0.4±0.05 d. The r.m.s. 

residual through the datum points was ±24 mJy - comparing very favourably with the 

±20 mJy observational error per point. This eccentricity is to he compared with the 

value e ~ 0.8 0.1 obtained from the shape of the X-ray light curves [7]. 
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Fig 3. Fit of model of radio emission to the "front-porch" data. Curve is calculated 
with three fitted parameters: amplitude, phase and eccentricity. The curve of 
best fit (shown) corresponds to eccentricity e = 0.72±0.01 and phase offset 
At = -0.4 d. 

It is somewhat difficult to attach a unique physical interpretation to AT given 

the uncertainties in the form of the stellar wind of the OB supergiant. The intensity 

in the "front porch" of the radio flare is certainly well fitted by using an R -2 

dependence of the stellar wind density. However, no account is taken of stellar wind 
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distortion from spherical symmetry or of rotation of the supergiant. Radio emission 

is assumed to be created as a direct result of stellar wind mass accretion on to the 

compact star. At this stage of the flare we have not invoked a shock expansion model 

to produce the radio emission. If mass were instantaneously accreted on to the compact 

star, producing observable radio emission, the fit given in Figure 3 would imply that 

periastron time occurred on February 2.04 UT. However, mass free- falls after capture 

on to the surface of the compact star in a time of ~4-5 x 104 s [7]. If the radio 

photons move out from the surface of the star at a velocity ~c, then AT = -0.4d also 

approximates to the sum of the infall time and the time till radio emission builds up 

to detectable values. 

On this basis we conclude that periastron occurred at approximately February 1.6 

UT near the time when the 5 GHz flare was first detected above the quiescent flux. 

The intensity of the radio flare resulting from the mass capture out of the stellar 

S sw n,/V~. By comparing the intensity in the "front porch" part wind alone is 
V sw 

of the 5 GHz flare from one 16.6-d flare to the next an estimate of stellar wind veloc- 

ity variations is possible. 

Only two 5 GHz flares have been monitored adequately to see a possible "front 

porch" effect. An upper limit of 0.i Jy was seen in the "front porch" of the flare of 

1976 November i0/ii [9]. For the 1978 February 1-5 flare the upper limit is =0.4 J 

Taking constant stellar wind densities at the same radius r from the supergiant for 

the two flares it follows that 

3 
Sg(1976Nov)/S~(1978Feb) = ¼ -- [V(1978Feb)/V(1976Nov)] 

Hence V(1978)/V(1976) = 0.63, implying a 37% change in the stellar wind speed 

-i 
between the two observations. A stellar wind speed of ~500 km s on 1978 February 1 

-i 
implies a corresponding speed of ~800 km s on 1976 November i0. 

(ii) Main Outburst Section 

1978 February 2.06 UT marks the commencement of the main outburst of the 5 GHz 

flare. What comparisons can be made between this flare and earlier 5 GHz flares? 

Haynes et al. [2] determined a period based entirely on radio observations of Cir X-I 

at 5 GHz. Sharp rises in the 5 GHz flux from Cir X-I on 1976 November 10.81 and 1977 

May 12.33 were used to deduce a period of 16.5 3+0.005 d. This was in excellent agree- 

ment with the X-ray estimate of 16.595 d (no quoted error) given by Kauzienski and 

H o l t  [6]. 

The latest flare, monitored at 5 GHz, differs from the early flares in having 
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strong "front-porch" emission and no clear sudden increase in flux commensurate with 

earlier flares (see Fig. 1 ). Now we have argued in Lecture I that a sudden flux 

increase, due to mass accretion on to the compact star at a rate greater than ~10 -8 M@ 
-i 

yr , creating an expanding shock which generates the 5 GHz emission. If the accretion 

rate is less than the critical rate enhanced emission will result, but no sharp rise 

in radio emission is to be expected. Comparing the sharp rises in the previous flares 

with the stG/~t of the "front-porch" emission, we estimate a period for Cir X-I of 

16.584±0.007 d based on the 1976 November 10.8 and 1978 February 1.6 flares. Alter- 

natively, the "front-porch" emission, which we attribute to stellar wind mass accretion 

on to the compact star, can be subtracted from the observed flare, leaving only emission 

resulting from Roche lobe overflow. On this basis we can then argue that the main flare 

started as a result of Roche overflow at 1978 February 2.06. Comparing this with the 

sharp rise in the flare of 1976 November 10.8 gives a period for Cir X-I of 16.593± 

0.015 d. Clearly, some uncertainty has been introduced into the period determination 

on the basis of the latest 5 GHz data. A period change of 0.5 d in i0 yr is expected 

on the basis of the dynamics of the Cir X-i system [7]. Unfortunately the accuracy 

the radio period determination from this flare is not sufficient to test the theoretical 

predictions. Further flares should be monitored at 5 GHz. 

The other point to be made about the main flare section is that more than one peak 

occurred during the flare (see Fig. i). On the basis of the shock model we propose 

that as a result of Roche lobe overflow more than one shock formed during the periastron 

passage time. Estimates of the time for radio emission to be observed after mass 

transfer commenced is 0.4 d (based on the "front-porch" data). Thus Roche lobe overflow 

commenced near periastron in the orbit at 1978 February 1.6 UT and the resultant radio 

flux was seen at February 2.1 UT. Roche lobe overflow continued for approximately 1.2 

d, ceasing on approximately February 3.2 UT. Radiation from the last shock front 

created reached a final peak at 5 GHz on February 3.6 UT and then started to fall. 

In Section IV (b)(i) we showed that an estimate of the mass. accretion rates out 

of the stellar wind and by Roche lobe overflow lead to the relationship 

where At i is time of mass accretion, Fsw , FRL are the integrated fluxes due to stellar 

wind, and Roche lobe overflow accretion respectively. 

Figure 1 provides rough estimates of the range of times over which we believe 

stellar wind and Roche lobe overflow occurred. Then 

<~SW>/<~RL > = 0.i x 630 x 1.6/0.8 = 140. 
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Thus 

RL > 10-3< > <~ ~ 7 x Msw 

However, we also showed that 

d2V 4 a2(Vmax G3M 3 Msw o - Vmin)Fsw[4 g c <(l-e cos~)-2> ~Ati(sw) ] 
-i 

With F = 3.0 x 10 -18 cgs units and if an efficiency factor of g = 0.1 [16,17] is 
sw 

taken, then for d = l0 kpc, R ~ 106 cm, v -v = 20 GHz = 2 x i0 I0 Hz, M = 
1033 max mln -i 

2 x g; ~ At = 9.4 x 1033 g; ~ At = 9.4 x 104 s, <(l-e cos~) -2> = 9 we have 
sw sw 

<Msw> = 5 x 10-6[0.l/e)(Vo/500kms-l)4(a/0.5Au)2 M~ yr -I 

Hence <MuL>--~, = 3,5 x 10 -8 M@ yr -I, which is about three times the Eddington limit. The 
4 

main uncertainty is in V 0 . The mass replenishment per orbit to the accretion disk 

surrounding the compact star is then about 

M 
replenish = <MRL > Z Ati(RL) 

i 

= i0 -I0 MQ/orbit 

which, considering the uncertainties in the model, agrees rather well with the expected 

rate of 3 x 10 -8 to 5 x i0 -I0 M®/orbit (Lecture I). 

(iii) Flare Decay 

We have shown above that a shock formed by Roche lobe overflow of mass on to the 

compact star expands way from the surface of the star till pressure balance between 

the shock and the stellar wind occurs. Then 

R = 4 x 1012(l-e cos$1 2/3 cm 
s 

This gives rise to radio emission according to [ii]; 

S ~ R n 
s 

or S = S (l-e cos~) ~, 
max 

with £ = 2n/3. 

For radio synchrotron emission from an expanding supernova shell in which the 
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magnetic field is "frozen-in" to the fluid motion, the appropriate values of a, b, c, 

d are a = 2, b = i, c = d = 2. 

If these parameters are taken to obtain for the last "clean" shock in the Cir X-I 

flare of 1978 February 1-5, then n = -2(i+~) where e is the spectral index of the radio 

emission (S~ ~ 9-~). For ~ z 0.5, n z -3 and i ~ -2. Thus we expect that the tail 

flux should roughly follow a law, S = S (l-e cos#) Z, with £ z -2. The exact value 
max 

of i may not be quite 2, since it depends on knowing precisely the five parameters 

a, b, c, d, ~. The parameters of the orbit have been accurately determined by fitting 

a model to the "front-porch" data for the 1978 February 1-5 flare (see (i) above). 

Values of e = 0.72+0.01 and AT = -0.4+0.05 d were determined. We then maintain the 

orbital phase ~ with time according to ~ - e sin # = 2~(t + Ay)/p between the "front- 

porch" emission and the decay curve in the flare. The only remaining variable para- 

meters in the fit to the data of the flare decay are s and i. After subtracting 
max 

the quiescent background of 0.3 Jy at 5 GHz the radio flare decayed from S = 1.42 Jy 

on 1978 February 3.62 UT. From Figure 4 it is clear that the least-squares fit to 

the data between February 3.62 UT and February 4.05 UT is extremely good with ~ = 

-1.64+0.02. The South African results near February 4.05 UT show a sudden reduction 

in flux density from i.i Jy to ~0.7 Jy. Attributing this change to a sudden reduction 

by a fraction ~0.4 in the area of the shock front producing the radio emission (as 

19[ , , J , I ' I ' I ' I 
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Fig 4. Fit of model of radio emission to the decay phase of the flare of 1978 February 
i. Curve (A) is S = Sma x (l-e cos~) -5/3. Curve (A) was calculated with two 
free parameters: amplitude, S , and index £. The eccentricity and phase have 
been determined from the "front-porch" data. Curve(B) is the same curve, offset 
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outlined previously) , and then extending the theoretical decay curve with ~l~ para- 

meters now determined, the fit to the data of February 5.3 UT is remarkably good, given 

the uncertainties of the model and the errors in the datum points. It will be remem- 

bered that the theory predicted a sudden drop by roughly a factor 2 in the flux 0.3-1 

d after the decay cormnenced - in strikingly good agreement with the observations. 

Perhaps the most remarkable aspect is that by determining the orbital parameters 

from the "front-porch" data and using these in the model for the flare decay we tightly 

constrain the flare decay parameters. 

(c) X-RAY DATA 

The X-ray light curves for Cir X-I observed by us in 1978 show considerable varia- 

tion from cycle to cycle, but appear to differ from those observed in 1976-77. They 

also appear to be different from those observed in 1971-72, since re-analysis of UHURU 

data [18] is reported [6] to have shown that the soft X-ray light curve of Cir X-I 

1971-72 was eclipse-like in form. 

Flares monitored through 1976-77 show that after rising to a peak, X-rays from 

Cir X-I quickly dropped in intensity to a very low value each period and remained low 

for ~4 d before gradually rising again [i]. The time of X-ray drop defined the X-ray 

period and phase. The latest X-ray results (Fig. 2) do not conform to this pattern, 

as they show enhanced emission shortly after the expected cut-offs. This effect in 

the X-ray data was first noted by Kaluzienski and Holt [6]. 

The predicted X-ray cut-off time (or transition) is shown in Figures 2 (a) and 2(b). 

This is based on the ephemeris given in [6]. In the X-ray data presented in Figure 2 (b) 

it can be seen that an X-ray cut-off occurred near the expected transition on February 

1.52 UT. However, enhanced X-ray flaring peaked 2 d later. In Lecture I we assumed 

that the X-ray light curve of the constant X-ray emitting object in Cir X-1 was caused 

by absorption of the softer X-rays in the strong stellar wind of the primary. As in 

the modelling of the "front porch", the density of the stellar wind was assumed to 

follow an inverse square law from the primary 

n H ~ R -2 

The column density along the line of sight is 

~ r  

If the orbital plane is inclined at an angle i to the plane of the sky and the longitude 

of the compact star's periastron is ~ = 2700 + @, then 
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T = (R2-x2)-i/2{~/2 - tan -I [x(R2-x2)-I/2]} 

where x = R cos (v + @) sin i. Here v is the true anomaly of the compact object in 

its orbit. Thus the flux density observed from the X-ray star is 

L x = L 0 exp(-T/T o) = Lo[eXp(-T)] I/To 

The quantity e -T we define as the "shape" of the x-ray light curve. We note that there 

is a formal contradiction between our assumption here that the X-ray output, L0, is 

constant, and our previous assumption that the radio output depends on the mass-accre- 
-T . 

tion rate. Nonetheless, the exponential factor e is modulated during an orbit far 

more than L0, so that e -T determines the shape of the observed X-ray curve far more 

than changes in L 0. 

In Lecture I we showed the shape of the X-ray light curve for a range of eccen- 

tricities. The orbital planes were assumed in the line of sight. The X-ray light 

curve of Cir X-I observed in 1976/7 had the same shape as would be seen from an object 

in a high eccentricity orbit (e about 0.8±0.1), if seen from a direction such that 

the angle between periastron and the line of sight was about i0 °. In Figure 5 we show 

the X-ray light curves for an object in an orbit of eccentricity e = 0.72 inclined 

at an angle 75 ° to the plane of the sky. This angle avoids the possibility of hard 

X-ray eclipses, but retains the deep modulation of the soft X-ray light curve. Perias- 

tron passage is at t = 0 in all cases. 

The eclipse-like UHURU light curve [18] can be identified with the 8 z 90 ° curve 

(epoch 1972 May), but with large uncertainty (-30 ° , +180°). The Copernicus X-ray light 

curve [14] shows a more rounded maximum and gentler downward transition than the early 

Ariel-5 ASM curves [i] and we identify it with the curve calculated for 8 z 30 ° (epoch 

April 1974). The early Ariel-5 ASM curves (epoch 1976.0) show the sharpest down-tran- 

sitions observed and these occur in the series of light-curves of Figure 5 at 8 ~ 20 ° . 

The COS-B light curve of Bignami et al. [19] shows an abrupt downward transition to 

50% of maximum intensity and a gentler tail thereafter (epoch March 1976). We iden- 

tify this tail with that seen at 8 ~ I0 °. The present observations (Figure 2(b)) show 

the tail developed in size to a period of enhanced X-ray emission immediately after 

the cut-off, we identify the increased emission with the peak visible after the cut- 

off in the curve with 8 z 0 O to 5 ° (epoch 1978.0). In fact a dip occurs at phase zero, 

and it is worth explaining how this occurs. Consider an orbit aligned so that perias- 

tron points precisely to Earth. When the compact object is at apastron (beyond the 

primary as seen from Earth) it is in a stellar wind of low density; however, the column 

density to the compact star is high because of the line of sight distance through the 

stellar wind. At periastron the line of sight distance to the object is smaller; how- 
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ever, the compact star, being closest to the OB supergiant, is in a region of high 

stellar wind density. Again the column density is high. Between these two extreme 

orbital positions the column density goes through a minimum and the X-ray intensity 

therefore through a maximum. According to our calculations this phenomenon is seen 

only in a high eccentricity orbit (e ~ 0.6), and only when the semi-major axis of the 

orbit is closely aligned with the line of sight. 
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Fig. 5. Shape of the X-ray light curves of a constant X-ray emitter orbiting in a 
stellar wind whose density follows an inverse square law. Orbit is of eccen- 
tricity 0.72 and orbit plane is inclined at 75 ° from the plane of sky. Longi- 
tude of periastron is m = 270 ° + 8, where @ is marked on each panel. The shape 
for @ = 0 should be compared with the X-ray light curve shown in Figure 2 

The X-ray light curve through one orbit depends critically on the orbit geometry. 

Moreover, because of the large eccentricity, the large mass-transfer rate and the close 

approach of the secondary to the primary, the orbit geometry must change (changing 

eccentricity and rotation of the line of apsides etc.). For a recent summary of the 

orbit dynamics in the low eccentricity case see Chevalier [20]. 

Forman and Jones [18] have indicated that the X-ray light curve of Cir X-I has 

changed from an eclipse-like light curve in 1972 to the shorter pulse of 1977 (Figures 

6,7). Can we explain this as a change in aspect of the orbit? 
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Fig. 6. An X-ray light curve for Cir X-I in 1971, showing a transition from an average 
intensity state of ~780 counts s -I to one at ~80 counts s -I. The time for 
this factor i0 intensity change is less than 80 min 

The largest effect on the regression of the line of apsides is tidal interaction. 

The ratio of period P of a binary system to the period U of aspidal rotation is [21] 

P/U = kla5a -5[15m2mllf2(e) + ~13a 3(mlG)-Ig 2(e) ] 

+ k2a~a-5[15mlm21f2(e) + w23a3(m2G)-ig2(e) ] 

where k i measures the central condensation of star i, of radius ai, mass mi, angular 

velocity ~i' the semi-major axis of the orbit of the stars is a, and 

f2 (e) = (l-e2) -5 (! ÷ 3e2/2 + e4/8) 

g2(e) = (l_e2) -2 , 

where e is the orbital eccentricity. 

In the case where one star (i = 2) is a mass point (k 2 = 0), and the large star 

rotates synchronously (~i = 2~/P), and the mass point skims the surface of the large 

star (a I ~ a(l-e)), then 

P/U ~ kl(l + e)-5[(l - e2) 3 + m2m;l(15 + 3e2/2 + e4/8)] . 

A massive star (m I ~ 20 M 8) has a high central condensation i0 ~ pc / p ~ 103 , increas- 

ing as it evolves off the main sequence [22]. If such a star is modelled by an Emden 

polytrope, the polytropic index is of high order, 2 ~ n ~ 4; for such a polytrope k I 
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is between 0.0013 and 0.074 [21]. Assuming such a star is, orbited hy a compact star 

of mass m 2 ~ 1 MQ in an orbit of eccentricity e ~ 0.72, we find 

6 x 10' 5 % P/U % 1 x 10 -4 . 
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Fig. 7. The average soft X-ray 
intensity profile as a 
function of phase for 
Cir X-I for the years 
1975 through 1978, 
Intensity is in arbit- 
rary units. Note the 
gradual progression to 
a "saw-tooth" light 
curve in 1977 - a 
signature indicative 
of precession of the 
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For P ~ 16 d, 7 ~ U ~ 400 yr. The lower limit applies when the massive star is 

less evolved. We have already seen (Figures 5 and 6) that significant changes occur 

in the X-ray light curve when the longitude of periastron changes by ~i0°; thus changes 

occur on a time scale ~U/30. Significant changes could have occurred even in th8 short 

era of 8atellit¢-bo~ne X-ray te~esdope8, and it is tempting to ascribe the eclipse- 

like X-ray light curves (large duty-cycle) seen by UHURU in 1971-72 to an orientation 

in which periastron of the compact star is behind the primary (cf. curves in Figure 5), 

with the short duty-cycle pulse of 1976 arising from an orientation in which periastron 

is this side of the primary (@ z 0.2 rad). 

In Figure 8 we plot @ as a function of time and show a precession rate of -I0 ° 
-i 

yr This is in good agreement in size and direction with the calculation made by 

Haynes et al. [7] on the basis that the secondary raises tides on the surface of the 

primary. 
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Fig. 8. Precession of the orbit 
of Cir X-I with time. 
Longitude of periastron 
reee88e8 at about i0 ° 
per year, according to 
attempts made to match 
observed X-ray light 
curves to calculated 
shapes of Figure 5. U 
= Uhuru data, C = Coper- 
nicus data, Cos-B = data 
from Cos-B, two points 
marked A-5 are from Ariel 
5. 

Owing to precession of the orbit over the next few years the X-ray light curve 

will continue its evolution and become a reflected image of the saw-tooth curve of 

2976-77 with an abrupt rise and gradual decline. 

(d) COMPARISON OF THE X-RAY AND RADIO DATA 

In Figures 1 and 2(b) we compare the 5 GHz radio flare structure with the X-ray 

flare. Clearly the X-ray luminosity is minimal between February ].3 and February 2.0 

UT. On the basis of the X-ray model discussed above a viue of @ near zero is appro- 

priate. Thus periastron in the orbit now nearly points directly to Earth (major axis 

of the orbit is in the direction of the line of sight to Cir x-l). 

The X-ray data alone suggest that periastron in the orbit of the compact star 
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occurred on approximately February 1.65 UT, in very close agreement with the predicted 

time of February 1.6 based on the "front-porch" radio data. 

The agreement between interpretations from the X-ray and radio data for this flare 

strongly argues in favour of the basic physical model for Cir X-I proposed in [7]. 

With the minor additions incorporated here it is our opinion that we have the correct 

interpretation for the Cir X-I system. 

VI SUMMARY OF THE MAIN RESULTS 

On the basis of simultaneous radio and X-ray observations of the flare from the 

binary system Cir X-I on 1978 February 1-5 we have shown that: 

1 The orbital eccentricity is e -~ 0.72+0.01. 

2 Stellar wind mass loading on to the compact star gives rise to "front-porch" radio 

emission at 5 GHz which, in turn, is used to infer a steady mass loss rate from the 

primary OB supergiant of about 5 x 10 -6 M 8 yr -I 

3 Roche lobe overflow for the 2-3 d period around periastron causes the main ou£- 

burst of radio emission and we infer a mass loss rate from the supergiant of about 

3.5 x 10 -8 M 8 yr -I 

4 The X-ray light curve Can be readily accounted for within our basic physical pic- 

ture and implies an orbital precession period of about 40 yr. It also implies that 

the semi-major axis of the orbit is currently directed essentially along the line of 

sight. 

5 The temporal ephemerides for orbital periastron deduced from the X-ray and radio 

data are extremely close - differing by only 0.05 d. 

6 The final decay of the radio light curve is remarkably well accounted for using 

a dynamical balance argument. 

7 An estimate of ~0.4 d for the free-fall time of captured material to the compact 

star's stellar surface is obtained from the "front-porch" radio data. 

8 On the interpretation of the ~220 d periodicity claimed by Davison and Tuohy [14] 

as due to orbital libration we infer a rotational period for the primary OB supergiant 

of some 6.5 d. We also infer an orbital libration amplitude of about 6' arc. 

In Figure 9 we give the sequential X-ray intensity every 16.595 d from 1975-1978. 

An approximate periodicity of roughly 3/4 yr can be seen - in broad agreement with 

Davison and Tuohy's 220 d periodicity. 



237 

Intensi y 

1975 Pulse number 1978 

Fig. 9. Intensity of sequential individual pulses of soft X-ray intensity from Cir 
X-I for the years 1975 through 1978. Intensity is in arbitrary units. A 
rough periodicity of about 3/4 yr can be seen - a signature indicating orbi- 
tal libration (see text) 

VII POSSIBLE y-RAY BURSTS FROM CIR X-I 

The x-ray source Cir X-i is similar in many respects to Cyg X-3, which has been 

reported [23] as a gamma ray source at photon energies E ~ i00 MeV with an integrated 

flux J ~ 4.4 x 10 -6 cm -2 -i s An important similarity between the two sources lies 
X 

in the respective radio emissions which are presumably of synchrotron origin [24,9,2]. 

Low-level quiescent emission occurs most of the time but superimposed on this are flar- 

ing episodes which occur irregularly in Cyg X-3 and with the 16.6-d X-ray period in 

Cir X-I. Apparao [25] and Fabian et al. [26] have suggested that the V-ray flux from 

Cyg X-3 could result from inverse Compt0n scattering of X-rays by radio-emitting elec- 

trons. Fabian et al. also suggested that Cir X-i may be a y-ray source, although in 

the absence of a source model no detailed calculations were presented. Here the expec- 

ted inverse Compton y-ray flux (Ey ~ i00 MeV) from Cir X-I is estimated using the source 

model given in Lecture I. It is shown that burst-like gamma ray emission should occur. 

The energy of inverse Compton y-rays resulting from scattering of X-rays of energy 
2 

E x ~ i0 keV by the relativistic electrons at the shock is Ey ~ ~ E x ~ i00 MeV. The 

y-ray flux J originating in the shock wave of thickness AR is [27] 
Y 

Jy = ~ROTNeNx/4Wd2 s -I 

where d, distance to source, is i0 kpc for Cir X-I, ~T' Thomason cross-section is 6.65 
2 

x 10 -25 cm , N is the relativistic electron number density (cm -3) which decreases 
e 

with time as the shock expands, and N x is the number of X-ray photons (E x ~ i0 keV) 

per second passing through the shock region, given by the spectru~a of Coe et al. [28] 

as 
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~i -i N x = 4~d 2 10E -2.6 dE ~ l045 s 
0 x x 

The manner in which N e varies as a function of,Rshoc k is difficult to determine. 
-n 

One approach is to assume a power-law variation Ne(Rshock) = Rshoc k and fit this to 

the observed decline of radio flux density in order to determine the index n. If we 

assume: (i) optically thin synchrotron emission from the shock during radio flare 

decline, (ii) conservation of magnetic flux, and (iii) a constant relativistic elec- 

tron spectrum during shock expansion, in order to obtain the radio flux density, then 

S ~N 
~) e 

B3/2 82 -0.5 AR , 

where B ~ R -2 , with source angular size 8 = Rshock/d. We find S ~ R -(n+l) 
+ shock shock 

t-4(n 1)/7 (for t > I0 ms) . The 2-cm wavelength flare observations of Thomas et al. 

-1.3 
[29] indicate S ~ t , and hence n = 1.3. However this value of n strictly applies 

only to the particular flare observed and under the assumptions (i) to (iii) above. 

Under different but equally plausible assumptions, and taking into account source vari- 

ations - e.g. changes in stellar wind strength from cycle to cycle - it is conceivable 

for n to lie anywhere between about 0 and 2. Hence, 

l018 = 1018(1 + i000t4/7) -n 0 < n < 2. N e [R s (t)/R s (0) ]-n , ~ 

The y-ray flux (cm -2 s -1) at Earth is then 

Jy(>100 MeV) = 0.2 exp(-T) x (i + 1000t4/7) -n , 

where absorption due to pair production in X-ray/y-ray interactions, with optical depth 

T ~ OT Nx AR/(4~c R~hock), is included [26,30]. This effect is important for Rshoc k 

108 cm, i.e. in the first few milliseconds of the shock. 

The behaviour of J (>i00 MeV) is shown in Figure i0 for the cases n = 1 and 2. 
Y 

It is clear that y-ray emission will take the form of precursors to Cir X-I radio 

flares and will consist of flares, or bursts, of rise times ~i ms and durations (for 
-2 

flux levels >10 -5 cm s -1) from ~30 ms (n = 2) to of order i00 s (n = i). The likeli- 

hood of future detection of such y-ray bursts is clearly best for n ~ i. For example, 

if n = i, a full year's integration of periastron passage observations should result 
-2 

in an excess above background of about ~0.i y-rays cm , since as many as three shock 

fronts can be expected during each periastron passage [29]. The time-integrated flux 

for the ca~e n = 2 would be orders of magnitude smaller. 
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The V-ray bursts of unknown origin reported at MeV energies [31] have rise times 

in the range 0.02 to 1 s and single-pulse durations from 0.02 to ~i0 s. These charac- 

teristics are not too dissimilar from the present predictions at higher energies for 

Cir X-I. The radio flare from Cir X-I occurs some hours after the predicted y-ray 

precursor, owing to synchrotron self-absorption. Future coordinated radio and V-ray 

studies of bursts, whether from Cir X-I or other sources yet to be identified, should 

therefore take this delay into account when attempting to correlate the two types of 

observation. 

VIII AGE AND ASSOCIATION WITH A SUPERNOVA REMNANT 

This section of the paper considers that the origin of the Cir X-i system is 

the result of capture of a compact star by a massive primary. It is to be noted that 

even if this is not so the physics of the emission from Cir X-I is unaltered - i.e., 

the origin of Cir X-I does not influence its current emission processes. 



240 

(a) GENERAL REMARKS 

The supernova remnant G321.9-0.3 is centred about 25' arc south from Cir X-I. A 

separation of 25' arc corresponds to ~80 pc if Cir X-I and G321.9-0.3 are both i0 kpc 

distant from Earth. The supernova shell size is about 15' arc across, which, taking 
-3 

the interstellar medium to average 1 H atom cm and taking the supernova energy to 

be about 1051 erg, corresponds to an age determined from the Sedov expansion of about 

105 yr. The high eccentricity of Cir X-I may be accounted for by supposing that the 

heavy primary star captured a compact star, presumably a neutron star, ejected from 

the supernova remnant. Suppose this occurred, and that the neutron star was ejected 

from the SNR with a velocity V0, either as a result of the asymmetry of the explosion 

or because of another acceleration mechanism [32]. The time, T, the neutron star would 

take to reach the Cir X-i position is T z 3 x 105 x (300 km s-i/v0) yr, in broad agree- 

ment with the age of the SNR. 

We have argued that the mass, M,, of the capturing star is probably ~20 M 8. The 

inferred high eccentricity noW of e z 0.72 strongly implies a very close balance of 

orbital kinetic energy and gravitational energy at the time of capture, and hence 

V02/2 ~ GM,/Rca p 

The capture distance is about 1012 cm no~, so that 

V 0 z 500 (M,/20 M8) I/2 (1012cm/Rcap) I/2 kms -I. 

The present high eccentricity means that although the neutron star was ejected from 

the SNR 105 yr ago, its capture occurred more recently. Mass-loading and tidal effects 

circularize orbits rather rapidly [15]. An estimate for the time for circularization 

is (Mn/M t0)½ z 104 orbits z 500 yr. The high luminosity of the primary star also 

indicates that it is in a short-lived phase of its evolution. 

The conclusion is that Cir X-I is a young object of age ~i03 yr. 

(b) ORIGIN OF THE PLATEAU NEAR CIR X-1 

The existence of the "plateau" of radio emission near Cir X-I can have at least 

three possible explanations on our model. First, note that it is unlikely to be the 

boundary of the cavity in the interstellar medium produced by the stellar wind of the 

primary star. Such a cavity would be 8pheridal, typically ~i pc in size and dentred 

on the OB star. But no more than about 10% of the emission from the plateau is north- 

ward of Cir X-I. 

Is the plateau a remnant cloud that travelled with a neutron star? If we suppose 
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that on its journey from the supernova to the position of Cir X-I a neutron star car- 

ried an ionized cloud of material with it at V ~ 300 km s -1, then the fact that the 

plateau's radio emission is essentially confined between the supernova remnant's posi- 

tion and the Cir X-I position means that since capture of the neutron star the cloud 

has not moved more than 5 pc times (fraction of emission northward/total emission), 

i.e. ~0.5 pc. There is no reason for the cloud to slow down unless an incredibly dense 

region of gas exists northward of Cir X-l, so that at V = 300 km s -I only some 2 x 

103 yr/(V/300 km s -1) can have passed since capture of the neutron star. If the cloud 

was kept powered initially by relativistic electrons supplied from the neutron star 

until capture, and these are now emitting synchrotron emission, 103 yr is too short 

a time for the cloud to have cooled down. Further, the time-integrated impact drag 

on the cloud by the surrounding interstellar medium amounts to a momentum decrease 

of about (4~/3)piV2R2cl t = AF: where t is the time it takes to move the cloud from 

the supernova position of Cir X-l, i.e. about 105(300 km s-I/v)yr; Rcl is the radius 
"3 

of the cloud; and Pi is the interstellar density. With Rcl ~ 5 pc, Pi ~ m.l x 1 gcm 

s - l )  -1  -1 this amounts to Ap < 4 x 1039 (V/300 km g cm s The cloud mass must then 

exceed about AP/V in order that it may not be significantly slowed down on its journey 

to Cir X-I. This gives Mcl > 4 x i032g m 0.5 M 8 with an average number density in the 
-2 -3 ~ 2 2 

cloud of i0 cm . Note that VMcl > pi V Rcl t, so that the rough lower mass limit 

estimate on M is approximately independent of the value assigned to V and is 

Mcl > (4~/3)Rci Pid , where d is the distance between Cir X-I and the SNR. 

Thus it is quite possible for the plateau to be a remnant cloud that travelled 

with a neutron star. The implications are that capture of the neutron star occurred 

only about 2000 yr ago and that the cloud has a mass in excess of about 0.5 Me. 

Is the plateau the Stromgr~n sphere of the primary star? The excitation para- 

meter ~ for an HII region is given by [33] 

= 13.3 (V/IGHz) 0.03 (Te/104)0.12(d/Ikpc)2/3(s/IJy) 1/3 

where d is the distance in kpc and S is the integral radio flux in Janskys. The inte- 

gral flux of the plateau at 1.4 GHz is about 0.i Jy. The distance is i0 kpc, so that 

the excitation parameter is ~ z 28, which could well correspond to a central star of 

type BO or earlier. So it is indeed possible that the plateau is the HII region of 

a hot, bright, massive star. 

There is however a slight problem with assuming the plateau is an HII region. 

This is the fact that it is offset from the position of Cir X-I whereas on a uniform 

density hypothesis one would expect a spherically centred HII region. If one accepts 

the HII hypothesis, presumably one would then argue for a non-uniform density to ac- 
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count for the lack of plateau emission northward of Cir X-I. 

Is the plateau the remnant of ejected mass? If it is assumed that a neutron star 

(mass M c) was captured by star L of Whelan et al. [9], then a third body is necessary 

to conserve momentum in the capture. Let us make the assumption that this extra mass 

is provided by the primary star which ejects a mass ~M at a speed V . . (We require 
7 -~ 3ect 

dM Vejec t to be some reasonable fraction of M c V z 3 x i0 M 8 cm s for rough momen- 

tumbalance. The remaining momentum can then go ~nto the motion of Cir X-l). 

This mass will expand as it moves out from Cir X-1 into the interstellar medium 

since, presumably, it started at roughly the density and temperature of the surface 

material of star L (T z 104 K and p z i0 II m i g cm-3). The outward gas pressure is 

then n.kT z i0 -I dyn cm -2 - much greater than the typical interstellar pressure of 
1 -2 

about 10 -12 dyn cm 

If it expands from some initial radius R. then the final radius will be reached 
1 

when nfina I z 1 cm -3, Tfina I z 104 K° Since the cloud radius Rf is now some 5 pc or 

so its original size was R i z Rf(nfinal/ni) i/3 z 1034 g z i0 M e . This implies that 

star L lost about 50% of its mass upon capturing the neutron star. Since the centre 

of the plateau emission is d z 2-3 pc southward of Cir X-I and if its velocity is 

1039 s -I" z d/T ~ 4 x 105 cm s -I then the cloud's momentum is 4 x g cm This Veject 

is to be contrasted with the estimate of the neutron star's momentum derived from 

M V of ~3 x 1040 g cm s -I - i.e. ~10% of the momentum has gone into ejecting the cloud. 
c 

The remaining momentum must then be captured by the binary, with the result that the 

translational velocity of the binary system Cir X-I should now be 

Vbinary = V [Mc/(Mp+Mc)]-~ (0.1-0.2) V z 30-60 kms -I 

In short: ejection also provides a plausible mechanism for production of the plateau. 

Without more data it is difficult to favour any one of these three possibilities. 

IX CONCLUSIONS 

The model developed in this paper has accounted for the observations of Cir X-I. 

We started from the assumption that Cir X-I is a binary star system i0 kpc distant 

with a period of 16.595 d and high orbital eccentricity. 

Mass accretion from overflow of the Roche lobe on to the compact star near perias- 

tron passage triggers one or more luminosity-driven shocks expanding away from the 

compact star's surface. Synchrotron radiation fromenergetic electrons at the shock 

front accounts for the multi-peaked radio light curve and the change of radio spectrum 
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with time. The "front-porch" radio emission is accounted for by mass accretion from 

the stellar wind of the primary OB star. The increased optical emission seen simul- 

taneously with the radio bursts is accounted for by the increased Roche lobe surface 

near periastron and degradation of high-energy photons produced at the shock. An 

accretion disk forms around the compact star~ as in the standard Roche picture of 

steady binary mass transfer. As the disk's angular momentum dissipates throughout 

the rest of the orbit, mass drains down on the compact star, producing a steady X-ray 

luminosity of 1035 to 1038 erg s -I. The particle spectrum giving rise to the observed 

spectrum of the steady level of radio emission also accounts for the observed change 

of optical depth during the radio outbursts. The observed drop in X-ray emission and 

changes in the X-ray spectrum are caused by absorption of the softer X-rays in the 

strong stellar wind of the primary OB supergiant. The strength of wind required is 

in agreement with the rate of mass loss inferred from the optical spectrum. The shape 

of the X-ray light curve is consistent with an orbital eccentricity of 0.8±0.1 and 

so are the changes in the shape of the X-ray light curve over the past few years. 

The shape of the "front-porch" radio emission is consistent with an eccentricity 0.72± 

0.01. The model makes the following predictions. 

(i) Tidal forces cause precession of the line of apsides of the orbit with a period 

which is estimated [7] to be between 5 and 500 yr. Both the shape of the x-ray light 

curve and the observed t~me between the rapid drops in the X-ray light curve are affec- 

ted by the precession. An apsidal rotation period of some 40 yr is indicated, based 

on ascribing (a) the eclipse-like X-ray light curve seen by Uhuru in 1971-72 to an 

oreintation of the orbit in which periastron of the compact star is behind the primary; 

(b) the short duty-cycle pulse [i] of 1976 to an orientation in which periastron is 

this side of the primary. On this ascription, we predict [7] that the phase of the 

X-ray emission will follow the line of apsides and that the X-ray light curve will 

eventually return to the eclipse-like state in the not-too-distant future (~i0 to 20 

yr from now). 

(2) The mass loss of the OB supergiant and the consequent mass gain of the compact 

star argue for circularization [15,21] of the orbit in a time [7] of about 500 yr. 

As the orbit circularizes we predict that the period should change [7] by about 0.5 

d every i0 yr. As circularization proceeds the periastron distance between the com- 

pact star and the supergiant increases. Less mass overflow then occurs, so that, 

apart from short-term fluctuations, a steady diminution in the flaring output of 

Cir X-I at a rate of about 0.2% yr -I ' is predicted. We also note that less mass rep- 

lenishment of the accretion disk occurs, so that it is expected that the steady X-ray 

and radio luminosities will also show a systematic decrease with time at a similar 

rate. 
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(3) The model predicts that the phase of the X-ray emission should follow the pre- 

cession of the line of apsides. Thus X-ray phase should vary on a rapid time scale. 

As the orbit circularizes the period will lengthen by about 0.5 d every i0 yr. 

(4) The shape of the X-ray light curve should change as the orbit circularizes so 

that the sharp cut-off of the X-rays becomes a smoother shoulder and the pattern of 

the X-ray emission should tend to be more symmetric about the cut off. 

(5) The radio and optical flaring near periastron should diminish in intensity as 

the orbit circularizes, since the periastron passage distance increases, so that less 

mass loading will occur. 

(6) Lower-frequency radio emission should become more readily observable and last 

for a longer fraction of the orbit, since the absorption by the stellar wind will 

decrease as the periastron distance increases. 

(7) X-ray emission will occur over more of the orbit as the absorption near perias- 

tron decreases, but the overall intensity should decrease, slnce less mass loading 

will occur. 

(8) y-ray bursts should accompany the periodic flares. 

(9) If Cir X-I is indeed the result of a compact star, ejected from G321.9-0.3, being 

captured by a massive primary, we do not expect the proper motion of Cir X-I to be 

large - as distinct from the proposal of Whelan et al. [9]. 

According to our model of Cir X-i the companion compact star (probably a neutron 

star) may possess a strong magnetic field. This suggests that the compact star may 

exhibit pulsar behaviour. The observations to date do not indicate any pulsar activity, 

so that either the pulsar emission cone is not pointing in our direction or the obser- 

vable flux level of the pulsar is below the threshold of sensitivity (Cir X-I is at 

~i0 kpc from Earth). Most pulsars have a spin-down age of order 106 yr [34], so that 

it may be that the compact star, in its travels from the supernova remnant G321.9- 

0.3 to the Cir X-I position, has "turned off". In any event it would be worth while 

attempting a more detailed search for pulsar activity from Cir X-I. 
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EINSTEIN AND GRAVITATIONAL RADIATION 

Edoardo Amaldi 

Universita degli Studi-Roma, Istituto di Fisica ,Guglielmo Marconi" 
Piazzale delle Sciencze, 5 1-00185 Roma, Italy 

I THE MATHEMATICAL DISCOVERY OF GRAVITATIONAL RADIATION BY EINSTEIN 

The expression "gravitational waves" appeared for the first time in two papers 

by Albert Einstein, one published in 1916, the other in 1918 [i]. In the first paper, 

presented to the Royal Prussian Academy of Sciences (Figure i) on the occasion of the 

meeting of its physico-mathematical Section, held in Berlin on June 22 1916, Einstein 

shows that the equations of General Relativity that he had published about one year 

before [2], can be solved in the first approximation, i.e. when the metric tensor gik 

can be written in the form (Figure 2) 

where g(O) 
ik 

(o) 
= gik + hik (la) gik 

is the Galilean or Minkowski tensor [3] 

o o  

0 -i 0 

gik = 0 -i 

0 0 - 

(Ib) 

and the unknown quantities hik are so small with respect to i, 

lhikl << 1 (ic) 

that their squares and products can be neglected. 

Einstein points out, from the beginning of his paper, that the linear equat~ns 

he obtains by introducing his "weak field approximation" into the equations of General 

Relativity, give rise to expressions for the tensor components hik similar to those 

of the retarded potentials of electrodynamics. "Therefore'~ he adds, "the gravi~- 

tional field propagate8 through space with the velocity of light". 

The mathematical derivations of the linearized equations andof the retarded 

expressions for the hik are given in Section i, which ends with the treatment, in the 

weak field approximation, of the problem of the gravitational field generated by a 
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Fig. i. Frontispiece of the volume of the Proceedings of the Meetings of the Royal 
Prussian Academy of Science containing the first paper by Albert Einstein 
on gravitational waves. 
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688 Sltl.ng de,' idffsikali~eh-mathematisehen Klasse v.m "22..h,ni 1916 

NKherungsweise Integration der Feldgleiohungen 
der Gravitation. 

Voll A. EINSTEIN. 

Bei der Behandhmg der  meisten spezicllen (nieht prinzipiellen) Pr~bleme 
auf  dem Gebiete der Gravitationstheorie kann man sich damit begniigen, 
die 9..  ill erster Niiherung zu berechnen. Dahei bedient man sich 1nit 
Vorteil der imaginiren Zeitvariable x~ = i t  aus denselben Grfmden wie 
in der speziellen Rehttivit~tstheorie. Unter ,,erstcr Niiherung,, ist ,label 
verstanden, daft die thm.h die Gleiehung 

g. =--~.+-, li)  

definierten Gl~L~en y ..... welehe linearen orthogomden Tr:ulsformationen 
gegenilber' Tensoreharaktcr besitzen, gegen I als kleine (Jr61,~en lle- 
handelt  werden kSnnen, deren Quadrate und Produkte gegen die ersten 1 
Potenzen vernachiflssigt werdcn dflrfen, l)abel ist 6~,. = i I zw. ~.. = o .~. 
je naehdem p = v oder ~t 9,= v. 

Wir  werden zeigen, daft tliest' 7. in analoger Weise berechm't 
werden k6mmn wie die re(ardierten Potentiale der Eh'ktrodynamik. 
Daraus folgt dram zunnehst, daft sieh die (;ravitationsfi,hh'r mit l,icht- 
gesehwindigkeit  :mslweiten. %Vie werde ,  im An.~ehlufl :m diese 'dl- 
gemeine LOsung ,lie (Iravitationswelh,n und tleren E n t ~ t e h u n g s w e i s e  

untersuelwn. Es hat sich gezeigt, daft die w~ll mir vorgesehlagem' 
Wahl des Bezugssystems gelllii~ der Bedi .gung !/= [ .q~,, I - ~  - -  I f t ."  

die l~.reehnung der Fehler in erster N[iheru.g nicht vorteilhafl ist. 
leh wurde hieraul '  .aufmerksam ,hlreh ,,ine l~riefliehe Mitteil ,ng des 
Asl r l l l l l l l n t ' l l  l ie  ,~l'rl'EIIs I | l ' r  ~llul, dtlt~ Inllll  tlureh ,'illC allch,re Wahl 
des l~.zugssy.~ll'ms z .  elnem einfiichercli Ansdruek des Gravilaliou.~- 
fi.ldcs eines r . h e . d e n  31asSenlmnktt's gchmgen kann. als ich ihn friiher 
gegeben halle ~. h'h stiitzt, reich daher im fidgefideu auf di,' .dlge- 
niei]l i l lvar ia l i le l |  Fclt|g'li. elillngell 

' .~itz,mg+b,','. XI.VII. 1915, .% S J.+. 

Fig. 2. First page of the first paper by Albert Einstein on gravitational waves. 
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point mass. 

Section 2 is devoted to the problem of gravitational plane waves, and Section 3 

to the energy lost by a system of masses by emission of gravitational radiation. He 

derives an expression for dE/dt which depends on the square of the third derivative 

with respect to time of the moments of inertia of the mechanical system (see later 

Equation (2)), but the result, physically correct, is affected by a small computa- 

tional mistake in the integration of the irradiated energy with respect to the direc- 

tion. 

Commenting on this expression for the irradiated energy Einstein writes: "in 

allen denkbaren Fallen einen praktisch verschwindenden Wert haben muss". (... in all 

thinkable cases it should have a vanishing value). 

Einstein's second paper on gravitational waves was presented to the Royal Prus- 

sian Academy of Science on January 31st 1918 (Figure 3). He announces from the begin- 

ning that he will correct "einen bedauerlichen Rechenfehler" (a regrettable computa- 

tional error) and provide more detail on wave propagation. A new derivation of the 

gravitational retarded potentials is given in Section 1 while Section 2 is devoted 

to a discussion of the energy of the gravitational field, in particular of the momentum- 

energy tensor, and to the case of the field generated by a point mass. In Section 3 

Einstein discusses again the case of plane waves and shows that they have two states 

of polarization. 

In Section 4 he derives the correct expression for the enrgy lost by a system 

of masses because of gravitational radiation emission, which, with minor changes of 

notations, can be cast in the familiar form 

where 

- d£/dt = (G/45c 5) D 82 (~,~ = i, 2, 3) (2) 

D ~ = Ip (3 x x~ - ~8 r2) dV (3) 

is the mechanical quadrupole moment of the system (Q is its mass density) and 

3 -I ,i 
G = 6.670 x 10 -8 cm g s (4) 

is the gravitational constant. 

Section 5 of Einstein's second paper deals with the "Einwirkung Gravitationswellen 

auf mechanische Systeme" (action of gravitational waves on mechanical systems), arriv- 
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[ . ~  Gesamt.qilzn.g yore 14. Fehr.ar 1918. - -  Mitteihmg ~'om .~1. Januar 

t oer Gravitationswellen. 
V o n  A. E m S T ~ .  

( V o r g e l e g t  am 31. Januar 1918 Is. oben S. 79].) 

L)ie wichtige Frage, wie dic Ausb re i t . ng  der (h'avitationsfehler er- 
tolgt, ist sehon vor anderUlal5 Jahren ill einer Akademiearbeit  vo .  
mir hehandelt  wordi.n',  l)a ahe r , ne inedama l ige  I ) a r s t e l l u . g d e s t ; e g e . -  
s tandes nicht geniigend durchsieht ig  u,ld aufle~le,n dutch einen he- 
dauerliehen Reehe]lfi.hler ve ru . s t a l t e t  ist, muff ich hie,' noehmals aut' 
,lie Angelegenheit, zuriiekkom,nen. 

Wie  damals, besehr~i,lke ieh reich aueh hier au f  de .  Fall, dalA 
,las betraehtete zeitrliu,nliche Konti , luum sich yon einem .galilei~ehen. 
. u r  sehr  wenig  unterscheidet.  Um ftir alle Indizes 

~j., = --8..÷%, (,) 

,~etzen zu  kSnnen, w§hlen wit., wie es in der  speziellen Relati~'it~it~- 
theorie iiblieh ist, die Zeitvariable .r~ rein imaginitr, indem wir 

• ~'4 ---- i t  

setzen, wobei t die .Liehtzeito bedeutet.  In ( I )  ist  ~.. ~ I b z w .  ~.~ ~ o ,  
je  naehdem ~ ~ .~ oder U :~: v ist. Die 7.~ sind g e g e n  I kleine G~3~en, 
welehe die Abweiehung des Kont inuums v°m feldfreien darstellen: 
sie bilden einen Tensor  vom zweiten Range gegeniiber LOSSNTZ-Trans- 
/brmationen. 

I. L 6 s n n g  d e r  N i i h e r u / t g s g l e i e h u n g e n  d e s  G r a v i t a t i o n s -  
f e l d e s  d u r e h  r e t a r d i e r t e  P o t e n t i a l e .  

Wir  g e h e .  aus  yon d~n fltr ein beliehiges Koordinstensystenl  
gfiltigen ' Fehlgleieh.nIzen 

(:) 

' Diese 8it~uogsl,er. ,9so.  S.6881T. 
' Von der Einmhr.n 8 de . . ) . -~ , l iedes .  (vKl. dies,, Sitzummber, 1917. S. w42| ist 

,label A b ~md  ~enommen, 

Fig. 3. First page of the second paper by Albert Einstein on gravitational waves. 
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ing at the expression for the power absorbed from the incident wave. This is extremely 

small. It provides, however, the last piece of information necessary for a complet e 

description of gravitational waves: their absorption by a mechanical system (detector) 

after their emission by a source (Equation (2)) and their propagation through space. 

The 5th and last Section of the 1918 paper contains the answer to a remark made 

by Levi-Civita [4] (Figure 4) about the expression used by Einstein for momentum energy 

conservation in the presence of a gravitational field. This contains arrays (t~ in 

Einstein's as well as in many modern authors' notations) which do not transform as 

second rank tensors. Einstein recognizes the mathematical correctness of the remark, 

that later was made also by Lorentz and by others, and adds: "aber ich see nicht ein, 

warum nur solche Grossen einphysikalische Bedeutung zuschreiben werden soll, welche 

di Transformati~neigenschaften von Tensorkomponenten haben". ('~ do not see, howe~er, why 

we should attribute a physical meaning only to quantities that transform as tensors"). 

Actually Einstein's quantities t~ were the first example of pseudotensors [5] appear- 

ing in the theory, and the exchange of views between Einstein and Levi-Civita was a 

prologue to the long debate about the more appropriate extension to General Relativity 

of the conservation laws valid in flat space mechanics and electrodynamics [6]. 

It is worth recalling that "pseudotensors" behave as tensors only under linear 

transformations of coordinates but not in general. This property explains and justi- 

fies the different attitude of Einstein, the physicist, and Levi-Civita, the mathema- 

tician. 

II FIRST STEPS TOWARDS THE OBSERVATION OF GRAVITATIONAL RADIATION 

In 1922 the problem of emission of gravitational waves, was reconsidered by Edding- 

ton [7], who was mainly concerned with their velocity of propagation~ He found that 

this was always equal to the velocity of light for plane waves as well as for waves 

diverging from a small source. He also computed the energy irradiated by a rod rotat- 

ing at the maximum angular velocity compatible with the limit of the tensile strength 

of solid matter and found that its order of magnitude is the same as for a hydrogen 

atom treated classically: 

- de/dt ~ i0-35e yr -I 

This value is so small that it seems to exclude the possibility of observing, even 

in future, the emission of gravitational waves by any mechanical system made by man 

on the Earth. 

Eddington also computed the energy irradiated by a double star and found that 

although much larger than in the previous cases, i.e. 
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l l {~ Gesamtsitzung yore ]4. Feb,',,av 191~. ~ Mitteihmg vom 31. . la, ,mr 

Bei gegehener  W e l l e  und gegebenem mechanisehen Vorgang ist 
hiernaeh ,lie der Welle entzogene Energie dureh Integration er- 

mittelbar. 

§ 6 .  A n t w o r t  a u f  e i n e n  yon  Hrn .  Lr .v]-C,VtT^ h e r r i i h r e n d e n  
E i n w a n d .  

In einer Serie interessanter  Untersuchungen  hat  Hr. L~:v,-Ctv,TA 
in letzter Zeit zur Kl~irung yen Problemen der .fllgemeinen Relativi- 
t~itstheorie beigetragen. In einer dieser Arbeiten ~ stellt er sich beziig- 
lich der l':rhaltungssiitze au f  ein'en yon dem meinigen abweic],cnden 
~tandpunkt  und hestreitet  a u f  Grund dieser seiner Au/' ihssung die Be- 
reeht igung meiner Sehlfisse in bezug "u,f ,lie Auss t r ahhmg der l,:nergie 
du*~h Gravitationswellen. W(,n,t wit  aueh unte, 'dessen durch Brier: 
weehsel (lie Frage in einer flir uns  beide ge,,i igenden Weise  geklfirl 
haben, halte ich es doch im lnteresse der Saehe f~ir gut,  einige all- 
gemeine Bemerkungen iiher dic Erhaltungss/itze bier anzuf'dgen. 

Es ist allgemein zugegeben,  dal3 gemfi[3 den Gru,tdlage,, der all- 
gen*einen Relativit~itstbeorie eine I)ei beliebiger Wahl  ties Bezugssystems 
gfiltige Vierergleiehung yon der Form 

existiert, wobei die ~..; die Energiekomponenten (let' .Materie, die t; 
Funktionen der y., uml ihrer e r s t e n  Ablei tungen sind. Aber  es be- 
stehen Meimmgsversehiedenhei ten dariiber, ob man (lie f~ al,¢ die Energie- 
komponenten des Gravitationsfehles aufzuthssen hat. [)iese Meinungs- 
versehiedenheit  halte ieh fiir unerheblieh, fiir eine hlot3e ~Vortfrage. 
Ieh behaupte  abe,', ,lab (lie angegebene,  nieht Iwstrittene Gleichung 
diejenigen Erleiel!tcrungen der [,~bersieht mit  sieh bring(, welehe den 
Wef t  der Erhaltungssiitze ausmaehen.  Dies set an der vierten Gleiehung' 
~.~ ~ 4) erlgutert, welehe ieh als Energiegh ' ichung z .  bezeichnen pflege. 

Es liege ein riiumlieh begrenztes materielles Sys tem vor, sul3er- 
halb dessen materielle Diehtel* und elektromagnetische Fehlstiirken ver- 
sehwinden.  %Vir ,lenkcn uns eine ruhende l:liiehe N. welehe das gauze 
materielle ,";)'stem umschliel3t. Dam* erhiilt m a .  dutch Integration der 
vierten Gleiehung iiber den yon ,S umschlossenen Raum: 

d ~' (t~ ~u x.) ÷ g (n x,~ + t,, - d ~ ,  { . ] ' ( Z ~ +  O , l r }  = e , , s  c o s  ~ e , ,s  (,,x,I)d¢ 

Niemand kann dureh irgendwelehe Grfinde gezwungen  werden, t~ als 
Energiedichte ties Gravitationsii~ldes und (t~, t], t~) als Komponenten  des 

' Aceade..ia &'i I.i.,'.~L V,I. XXVI. Si.d.la des ,..' aprlh, t9t 7. 

Fig. 4. Thirteenth, and penultimate page of the second paper by Albert Einstein 
on gravitational waves. 
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- de/dt ~ 10-20e yr -I, 

it was well below the limits of observability with the technology available in the 

early twenties. 

Gravitational waves remained for more than 30 years mainly a subject of mathe- 

matical speculation, especially in connection with the problem of a well understood 

formulation of the conservation laws in the presence of gravitational fields [6]. 

The relative acceleration of free test particles was suggested by Pirani in 1956 

[8] as a possible method for measuring the Riemann tensor. A few years later Bondi 

[9] and [i0] considered a harmonic oscillator composed of two masses connected by a 

spring as a possible detector of gravitational waves. Since then Weber devoted an 

extraordinary effort to bring the problem of gravitational waves into the domain of 

observable physical phenomena. In 1969 [ii], after nine years of very hard and com- 

petent work, Weber published his observation of coincidences between two detectors 

one placed at Maryland University, the other at the Argonne National Laboratory, a 

thousand kilometers away from the first one. 

The announcement of this result, obtained 53 years after the first paper by Ein- 

stein, produced a great impression everywhere and a number of new experiments, very 

similar to those of Weber, were started in USSR, Europe, USA and Japan. All these 

experiments, however, failed to confirm Weber's observations. In spite of these nega- 

tive results, the search for gravitational waves did not falter. By 1970 a number of 

groups in different parts of the world had started to develop new detectors more sen- 

sitive than all those used before: we will call them "second generation". 

The motivation of this renewed effort has its roots in the fascination of the 

problem, and in the ingenuity of the methods conceived and developed by Weber and by 

others: methods than can be further improved and pushed to much more advanced levels. 

The motivation alsohas roots in the results of theoretical predictions made by various 

astrophysicists. While it is very difficult for them to interpret the energy and 

statistical occurrence of coincidences observed by Weber in the frame of the events 

that take place in the galaxies according to our present knowledge, the astrophysicists 

do however estimate that in various classes of events there should be an emission 

of gravitationa I waves which, although of very low intensity and very low statistical 

frequency, can nevertheless be brought within range of observation provided various 

techniques are pushed successfully to their extreme limit. These lectures are devoted 

to the problem of developing instruments having sufficient sensitivity to detect the 

gravitational radiation emitted by astronomical objects. 
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,f 
I should recall here, however, that an emission of gravitational waves has most 

probably been observed by Taylor, Fowler and McCulloch [12] in the case of the binary 

pulsar [13]. This system consists of a pulsar (PSR 13 + 16) and a neutron star, both 

of 1.4 (± 10%) solar masses moving in a very eccentric orbit of Pb = 8 hours period. 

The periodic emission of radio waves by the pulsar (P = 59 ms) provides very rich 

information on the structure of the binary. Besides the advance of the periastron 

(~ = 4.2 deg/year ± 0.05%, in excellent agreement with General Relativity) four more 

effects of relativistic origin are observed and three of them measured [12]. Among 

is the change with time of the binary orbital period (Pb = (-3.2 + 0.6) x 10 -12 these 

s/s) : this has the sign and magnitude predicted by the Einstein equation, (2), with 

a few trivial corrections. Since other possible corrections to Pb are negligible by 

comparison [12], this result provides an indirect proof of the existence of gravita- 

tional waves carrying energy away from an orbiting system. 

In the frame of these lectures, I would like to point out that the agreement 

between the observed and computed values of Pb indicates that our present estimates 

of the emission of gravitational radiation are correct, and therefore, through the 

reciprocity theorem, our estimates of their absorption by matter - and in particular 

our estimate of the cross section of a graviatational wave antenna - should also be 

correct. 

III THE SOURCES 

The astrophysical sources of gravitational waves can be divided into two classes: 

(a) periodic sources such as spinning stars and double stars; (b) catastrophic events 

such as gravitational collapses. Periodic sources are too weak for the observation 

of their gravitational emission from the Earth. Only the Tokyo group is trying to 

observe the gravitational emission from the pulsar of the Crab Nebulae [14]. Hirakawa 

will lecture on their interesting experiment. 

Computations by means of Equation (2) of the gravitational radiation emitted by 

various types of catastrophic events have been made by many authors: Ruffini and 

Wheeler, Ferrari and Ruffini, Thorne and collaborators, etc. [15,16]. 

A compilation of all these results is shown in graphical form in Figure 5 [17], 

where log h is given as a function of log 9 (Hz) and log Tg (sec) (~ is the frequency 

of the gravitational wave, and T the duration of the catastrophic event). 
g 

Besides h, the figure shows also the spectral energy density 

in GPU (Gravitational-wave Pulse Unit) defined by 

F(~) of an event 

1 GPU = 105 erg cm -2 Hz -I (5) 
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Fig. 5. Amplitude h and spectral energy density F(~) of gravitational waves emitted 
in a few typical catastrophic events versus event duration (Tg) and wave 
frequency. Results of various authors compiled by Whalquist et al [17]. The 
number of solar masses converted into gravitational waves is given where 
appropriate. 
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This unit has been introduced [18] because a 8olar ma88 converted into gravitational 

waves emitted isotropically over 4~ and uniformly over a frequency band-width of 1 kHz, 

gives 1.5 GPU on the Earth, if the event takes place near the center of our Galaxy. 

Two extreme frequency regions appear in the figure: 

- the very low frequency (V.L.F.) region: 

10 -5 _< ~ < 10 -2 Hz; 

- the medium frequency (M.F.) region: 

50 < 9 < 104 Hz. 

The detection of VLF gravitational waves can be made by Doppler tracking of inter- 

planetary spacecraft [17]. I will not discuss this very interesting method, the main 

features of which can be found elsewhere [19]. 

For M.F. gravitational radiation two types of detectors are now being developed: 

(a) aperiodic detectors; and (b) resonant antennae. 

The aperiodic detectors originate from Pirani's remark already mentioned in Sec- 

tion II [8]. Their essential feature is a laser Michelson interferometer which allows 

a high precision comparison of the length of its two arms, which undergo small changes 

under the influence of a gravitational wave. Unfortunately I do not have time for a 

discussion of this class of detector, other than to say that at present they appear to 

be less advanced than those of class (b). 

Resonant detectors originate from Bondi [9] and Weber [10]:agravitational wave 

incident on two masses connected by a spring perturbs the equilibrium between the 

gravitational and the electromagnetic forces responsible for the spring action. The 

oscillator starts to vibrate with an appreciable amplitude whenever it resonates with 

a Fourier component of the incoming wave. After the gravitational wave has passed, 

it will continue to oscillate, with its oscillations damped according to the time con- 

stant determined by its dissipation processes. A very long damping time is clearly 

advantageous for allowing a sufficiently accurate measurements of the initial ampli- 

tude. 

My lectures deal mainly with resonant detectors of the "second generation" under 

development in many laboratories. 

A very important aspect of catastrophic sources is their statistical frequency 

of occurrence. From Figure 5 we see that a supernova at the center of our Galaxy 
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produces a gravitational wave that on Earth has an amplitude 

h ~ 10 -17 (6) 

Events of this type, however, are expected to take place at a rate of one every 

+2O 
2010 years. 

In order to obtain a statistical occurrence of supernovae of the order of one 

every i0 days, we should be able to observe events of this type taking place even in 

the Virgo Cluster. This means that we should succeed in constructing instruments 

which allow measurements of gravitational wave amplitudes as small as (Figure 5) 

h ~ 10 -20 - 10 -21 (7) 

IV THE MAIN FEATURES PREDICTED FOR GRAVITATIONAL WAVES 

In the weak field approximation, the equation of General Relativity take the 

linear form 

Q hik = (16wG/c4)Tik (8) 

with the i0 functions hik fulfilling the four gauge conditions 

~hik/~x k = 0 (i = 0, i, 2, 3) (9) 

very similar to the Lorentz gauge condition of electromagnetism 

~Ak/~x k = O. 

The four conditions (9) reduce to six the ten independent component of hik. They 

are imposed by specializing the coordinate system. This, however, is not uniquely 

fixed by the Lorentz conditions (9), since these remain unaffected by the transforma- 

tion 

hik ÷ h'ik = hik = ~vi/~xk + ~Vk/~xi (i0) 

where the v i are four arbitrary functions small enough to leave lh~k I << i, fulfilling 

the equations 

Ovi = 0 
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By a convenient choice of the v.1 (i = 0, i, 2, 3) the components of hik can always 

be reduced to 2 c o r r e s p o n d i n g  t o  two d e g r e e  o f  f r e e d o m ,  i . e .  t o  two s t a t e s  o f  p o l a r i -  

zation. 

Let us pass to the important case of plane waves propagating in the x(H x I) direc- 

tion, dropping the prime introduced in equation (i0). The tensors hik corresponding 

to the two polarization states mentioned above, written in a convenient gauge (trans- 

verse-traceless gauge) [20] have the form 

°hol I ~Y h 0 with hzz = - hyy t (ii) 
h+ = 0 h = h (x + ct) 

z YY YY 

0 h° l I h = 0 h with zy yz (12) 

x 0 hy z = hy z(x + ct) 

zy 

In order to understand the meaning of these expressions, we consider a wave of 

type (ii), arriving along the x axis, from x = -~, which finds in the vicinity of the 

origin of a specific reference system RS H {0, x, y, z, t}, an observer with all neces- 

sary equipment for measuring, by means of light signals, the distance £ between two 

test pointlike bodies at rest in RS (Figure 6). If the function hyy(X - ct) is a step 

function of amplitude h (>0), the experimenter sitting on the centre of mass of the 

two test bodies observes a sudden decrease of all distances in the y direction and a 

8~rraz~neou8 increase of all distances in the z direction but no change of the dis- 

tances in the direction of propagation x: 

0 { x axis ~ = -~h for i parallel to the y axis 
+~h z axis 

(13) 

The sign of these variations will change, of course, with the sign of h. The experi- 

menter will also in~ediately recognize that the results (13) are correct not only in 

the case of a step-function, but in general for hyy(X - ct) of any shape. 

The experimenter will attribute these changes to forces applied to each one of 

the point masses. He will play a bit with these results and conclude that the force 

per unit mass has the components 

gy = ~'h'~y gz = - ~'h'+z (14a) 
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y~ 

L 

.... 4 

Fig. 6. A gravitational wave in the polarization state h+ produces changes of all 
distances transverse with respect to the direction of propagation x. Further- 
more these changes have opposite sign for distances parallel to the y- and 
z-axis. 

and intensity 

I$1 = cg$ + g~>l /2 = ~.~cy2 + ,.2>1/2 = ~ + r  Cl4b> 

From (14a) it follows that the lines of force are hyperbolae with the y- and z- 

axis as asymptotes (Figure 7). If the incident wave is periodic or, a Fourier component 

Y 

Fig. 7. Lines of force of a gravita- 
tional wave in the polariza- 
tion state h+(x-ct). 
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of an aperiodic wave, a test particle can be considered to follow a given hyperbola 

for half a period in one direction and half a period in the opposite direction. The 

experimenter will describe the situation by saying that the gravitational wave has 

produced transversal tidal forces. 

Waves in the polarization state (12) produce the same effects apart from a 45 ° 

rotation of the asymptotic lines of Figure 7 around the direction of propagation. 

Finally I will recall that in the case of a plane gravitational wave propagating 

along the x-axis, the only non zero component of the pseudotensor t ik is t 01, which 

has the form [5] 

ct °l = w = (c3/16~G){~z + (hyy - &zz)2/4}, 

and represents the power density of the wave (erg cm -2 s-l). 

(15) 

V GRAVITATIONAL ANTENNAE OF WEBER'S TYPE 

According to the original proposals by Bondi and Weber (Section II) a resonant 

detector of gravitational waves can be schematized as an "ideal oscillator" consisting 

of two pointlike masses m attached to the ends of a massless spring of length i and 

elastic constant k = ~2/m (Figure 8a). 
u 

In almost all cases [21] a resonant antenna consists of a cylinder of a homo- 

geneous material (AI, Nb, sapphire, silicon) of total mass M, length L, and whose 

fundamental longitudinal mode of vibration has the angular frequency ~o (Figure 8b). 

y,a 

/ 

z (a) z (b) 

Fig. 8. (a) Ideal oscillator and (b) real cylindrical bar placed along the z-axis, 
under the action of a gravitational wave in the polarization state h+(x-ct) 
propagating along the x-axis. 
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One can easily show that if a gravitational wave in the polarization state (ii) 

arrives from the left along the x-axis, the oscillator of Figure 8a starts to vibrate 

according to the equations of motion 

where 

~o + To -I 6o + 2o to = ½1 hzz ,'" (16a) 

To = Q/~o (17) 

is the damping time of the oscillator, i.e. the time interval one has to wait for a 

reduction by a factor e of the initial energy of the oscillator. 

The equation of motion of the cylinder of Figure 8b influenced by the same gravi- 

tational wave, is a partial differential equation because in this case the unknown 

function is ~(z, t). If we limit, however, our considerations to the ends of the bar 

(z = ±L/2), we obtain 

(16b) 

The similarity between the two equations (16a) and (16b) is suggestive of the 

idea of an "ideal oscillator equivalent to a bar". A first condition of equivalence 

clearly is 

= 4L/~ 2, (18a) 

which fixes the value of i in terms of L. A second condition, i.e. 

m = M/2 (18b) 

is obtained by imposing the following two equalities: the first involving the dis- 

placements, 

the second 

to(t) = ~(+-L/2, t) ; 

T O = T b 

the kinetic energies of the two mechanical systems t 

T O = m~2(t)/2), T b = M~2(L/2,t)/4 . (19) 
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The equivalence established by the two relations (18) between an ideal oscillator 

and a longitudinal vibrational mode of a real bar will be frequently used in the fol- 

lowing. 

In order to study in some detail the behaviour of an ideal oscillator (or a real 

bar) under the action of a burst of gravitational radiation, we will do the calcula- 

tions for a "standard pulse" defined by (Figure 9): 

h+ = h O cos ~o t for I t l  ~ Tg/2 

h+ = 0 otherwise 

(20) 

/%/% 
- ' ,/ '  

L/-~. L /  

h (t) 

f\AP  h/Ih/_ 
2,~/~ O 

H~ 
ho% 

A A m 
V 4 L J  

4~/'~g 

Fig. 9. Standard pulse of gravi 
tational radiation (a), 
and its Fourier trans- 
form (b). 

For T 
g 

mation, by 

<< 4To, the solution of Equation (16a) is given, with very good approxi- 

~(t) = (~ol/4)(hoTg) exp (-t/2To) sin (~o t + 7) (21) 

This expression shows that the initial amplitude of the damped oscillation is 

given by the product of two factors: the first one incorporates the two most impor- 

tant parameters of the oscillator, while the second is determined by the main features 
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of the burst of gravitational waves. 

Let us now specialize the power density of the incoming wave (15) for a wave in 

the polarization state (ii) (hy z = 0, hzz = -hyy). We obtain 

w = (C3/161TG) h 2 (22) 
YY 

If we take for h a standard pulse (20) we obtain, for Itl S Tg/2, 
YY 

w = (c3/16~G) h 2 sin2~ t . ~ 2 erg cm -2 -i s (23) 
o o o 

This expression, averaged over one period (T o 

energy density of the standard pulse 

= 2z/G0 o) and multiplied by Tg gives the 

I = wT (c3/32zG) 2 h 2 T erg cm -2 (24) 
o g o o g 

This energy density is spread over a frequency band of width 

-i 
A~ -~ T (25) 

g 

and is therefore conveniently expressed in terms of the spectral energy density F(~) 

F(~) ~ = I . (26) 
o 

Introducing (24) and (25) into (26) we obtain 

F(~) = (c3/32~G) ~(hoTg) 2 erg cm -2 Hz -I (27) 

This relation, derived for a standard pulse, allows the conversion from (hoTg) 

to F(~) and viceversa. It is commonly used also in the case of catastrophic events, 

which emit gravitational waves of shapes different from the standard pulse. The value 

of the constant appearing in the expression (27) is 

3 1036 -1 c /32~G = 4 x gs (28) 

It is convenient to use the cross section of a resonant antenna introduced by 

Ruffini and Wheeler [15]. The energy E A absorbed by a resonant antenna from an in- 

coming gravitational wave of spectral energy density F(~), can be put in the form 
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f 
E A = iF(V) U(V) d~, (29) 

where ~(~) has the dimensions of an area. 

If the antenna has a single very sharp resonance at ~ = ~o' the slowly varying 

function F(~) can be brought out of the integral, and we obtain 

E A = FC~o)UGW (30) 

where 
f 

~GW = ]~(~) d~ . (31) 

From equation (19) we obtain 

EA %max M~m2ax/4 M/0 ~/2 2 
= = = o _ m a x _ 4  • 

Using (21) for ~max' (18a) for i, 

~o = 2~Vs/l = 2~Vs/2L = ~Vs/L' (32) 

and (27) for F(9), we deduce the following expression 

2 
OGW = (8GM/~c) (Vs/C) , (33) 

proportional to the mass M of the antenna and to the square of the velocity of sound 

in the bar material. 

The expression (33) corresponds to the case of a gravitational wave in the pola- 

rization state h+ incident along the x-axis on a cylindrical bar with its axis along 

the z-axis (Figure 8b). If the incident wave is unpolarized, the right hand side of 

(33) should be multiplied by %. 

The sensitivity of a cylindrical antenna is not isotropic. It depends on the 

angle @ between the axis of the cylinder and the direction of the incoming wave accord- 

ing to the directional pattern 

f(@) = (15/8) sin2@. (34) 

This expression can be used for averaging the cross section OSW with respect to 

the direction of the incoming wave. This second operation givesa factor 8/15, which, 
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together with the factor ½ due to the polarization averaging, provides an expression 

for the cross section averaged with respect to both these aspects: 

2 i 88G(  
~GW = ~ x i~ ~ c m = 

2 
= (32GM/15Xc) (Vs/C) . 

(35) 

For the square antennas of the Tokyo group (Figure i0) the directional pattern 

is 

f(O,~) = 5/2 - (5/2) sin20 + (5/8) sin2@ cos22~ (36) 

where 0 is the angle of the direction of the incoming wave with respect to the axis 

of the square (perpendicular to the plane of Figure i0)~ and # the azimuth. 
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Fig. i0. The square antenna 
of the Tokyo group, 
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In the derivation of (33) we have used the expression (32) valid for the funda- 

mental longitudinal vibrational mode of the bar. For a harmonic of angular frequency 

v 
s 

= n~ = nw -- (37) 
n o L 

the expressions (33) and (35) should be multiplied by i/n 2. 

VI THE TRANSDUCER 

The most delicate and qualifying part of a resonant antenna is the transducer 

whose function is to transform the mechanical vibration of the bar into an electro- 

magnetic signal that can be easily amplified and recorded. 

All transducersused at present or proposed for gravity wave detectors appear 

to fall within the definition of linear devices, perhaps with the exception of certain 

types of "quantum non demolition" detectors (see the lectures to this school by W.G. 

Unruh). Therefore their properties are best specified by the linear equations which 

connect the mechanical input variables, for example: Pt(t) ~ force exerted on the 

transducer, ~(t) ~ velocity of the end of the bar, and the electrical output, voltage 

V2(t) and current I2(t). These equations have been discussed by various authors, in 

particular by Giffard [22], and will be presented to this School in the lectures of 

David Blair. 

v ( t )  
C 

l_ v( t )  
- - - - o  o 

a) b) 

Fig. ii. (a) A strain transducer located at the center of the bar measures u(o, t) 
which is proportional to ~(L/2, t) (b) A capacitor made by a fixed plate 
and the end face of the bar measures ~(L/2, t). 

In some extreme cases the output impedance of the transducer is so high that I2(t) 

can be neglected and the output reduces to the voltage V2(t). In other cases the out- 

put impedances is so small that V2(t) can be neglected, and the output of the trans- 

ducer reduces to the current I2(t). In these two extreme cases (sometimes descrlhed 

as voltage mode and current mode), the two impedance equations mentioned above reduce 

to a single relation between the single output variable and a single input variable. 
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/ ]  To Squid 

BAR /~.(~,,~i.,~, a) Two magnet scheme 

TiSquid 
BAR b) One magnet scheme 

BAR 
i To Squid 

~ c) Magnetic dipole ring scheme 

~ . .  Soperconducting ring 
carrying a current 

Fig. 12. A few alternative schemes 
proposed by the Rochester 
group for measuring ~: the 
fixed coil, which is con- 
nected to a SQUID, is 
placed in a strong magnetic 
gradient generated by two 
magnets (a), one magnet (b) 
or a superconducting ring 
carrying a current (c) att- 
ached to the end of the bar 
(D.H. Douglass: Pavia Symp- 
osium, see [17]). 

For reasons of simplicity in the following I will discuss the behaviour of reso- 

nant antennae equipped with a transducer operated in the voltage mode, i.e. a trans- 

ducer whose behaviour is adequately described by a single relation, for example, 

v(t) = ~ ~(t) (38) 

where I have dropped the subscript 2 of V2(t) and assumed that the input variable is 

the displacement ~(t) = ~(±L/2, t) of one end of the bar (Figure 8b) and 

~(z,t) =(~oL/~ 2) hoTg sin(~z/L) sin(~ot + ~ (39) 

is the solution of Equation (16b) for a monocromatic resonant incident wave. 

Equation (38) provides an adequate description of the case, for example, of a 

piezoelectric crystal or ceramic placed into a slot cut in the median plane of the 

cylinder. In this case the output voltage V(t) is proportional to the strain in the 

plane z = 0: 

[u(z,t)]z= 0 = [~IBZ]z= 0 = (T/L) ~(±Ll2,t) 
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which turns out to be proportional to the displacements of the bar's ends. 

The main advantages of piezoelectric transducers are their extreme simplicity 

and capacity to be operated at any temperature, from room temperatures to very low 

temperatures. 

A great variety of transducers has been proposed, designed or developed by various 

laboratories. Some of them detect ~(t) (Figure ii), others ~(t) (Figure 12) or ~(t) 

(accelerometers: Figure 13). Some of them are p~88~ve t~ansdueer8 while others are 

~et~ue t~ansd~6~8, i.e. devices that incorporate some form of parametric amplifica- 

tion. 

CRYOSTAT 

I .... I 

souiD A ,  
Nb 
DIAPHRAGM 

-I ~ /-RF AMPLIFIER 
/ /-AUDIO AMPLIFIER 

• ..-r- / / INTEGRATOR 
I r,,./ r,.J I PHASEIF-~I--I ~ _ 

~Z~-~-~ ~ ~>--->]SENStTIVEI-~-I~ -IPASSI---~ 
I/" I/" IDETECTORI" IFILTERI \ 

; ~ OUTPUT 

I 
"= SUMMING 

AMPLIFIER 

Fig. 13. The superconducting tunable diaphragm accelerometer developed at Stanford 
measures ~. A superconducting diaphragm attached to the end of the bar has 
the same vibrational frequency as the bar and is placed between two super- 
conducting coils LI, L 2 carrying a constant current I o. When the bar oscil- 
lates the diaphragm resonates and changes the values of L 1 and L 2 producing 
a variable current in L3, whose magnetic field is detected by the SQUID [44]. 

The most advanced transducers today under development are based on the use of 

SQUIDs (Superconducting Quantum Interferometric Devices) or superconducting resonant 

cavities. Unfortunately I do not have time for a detailed discussion of these various 

devices. In one of his lectures Blair will describe the superconducting resonant 

cavity transducer being developed at the University of Western Australia. 

Vll NOISE, ALGORITHMS, DISTURBANCES AND COINCIDENCES 

Any conceivable gravitational wave detector must be a high sensitivity instru- 

ment in order to measure length variations of the order of those given in equations 

(6) and (V). These are comparable with (or smaller than) the variations produced by 

various noise sources such as the Brownian motion of the bar, the voltage and current 

noise of the transducer and of the electronics used for amplifying the desired signals. 
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Noise can be reduced by appropriate design of the detector but can never be eliminated. 

Furthermore its dependence on the structure of the detector is well understood and it 

can therefore be treated mathematically by means of appropriate algorithms. 

Instraments of high sensitivity, however, are always affected by disturbances, 

that is - uncontrolled circumstances. In the case of gravitational wave detectors, 

these disturbances may be of seismic, mechanical, acoustical, thermal or electromagne- 

tic origin. In principle the experimenter could succeed in eliminating them. In prac- 

tice they can be reduced but never eliminated except by using two or more detectors 

placed at a great distance one from the other and recording the coincidences between 

their outputs with an adequate resolving time. In order to establish if the various 

stations receive a signal at the same time it is sufficient to record the Universal 

Time (U.T.) on the magnetic tape used to record the output Df the local antenna. 

Figure 14 shows the gravitational wave observatories in preparation at present 

in various parts of the world. Because of the directional pattern of the various 

antennae (Equations (34) and (36), the problem of observing the same catastrophic 

events in more than two stations is rather complicated and will require a considerable 

effort of coordination [23,24]. 

In order to understand the problem of noise and its mathematical treatment, I 

will start with a detailed discussion of the Brownian motion, which should be con- 

sidered as the prototype of all narrow-band noise. 

The theory of this phenomenon also originates from Einstein's work: actually 

from the second of the three famous papers which appeared in Vol 17 (4th series) of 

Annalen der Physik of 1905. Each of these three papers deals with a different sub- 

ject, "each today acknowledged to be a masterpiece, the source of a new branch of 

physics. These three subjects, in page order, are: theory of photons, Brownian mo- 

tion and relativity" [25]. Einstein was awarded the Noble prize in 1922 mainly for 

the first of these papers, although the motivation published by the Nobel Committee 

is not for the concept of the photon but for "the services to Theoretical Physics, 

and especially for his discovery of t~e law of the photoelectric effect". 

Clearly I do not need to spend any time underlining the importance of the third 

1905 paper, that on Relativity. Not only Restricted Relativity was essential in the 

frame of the theory of electromagnetic phenomena, but constituted an essential step 

towards Einstein's theory of General Relativity from which, among others, gravitational 

waves spring up with their sources and detectors. 

A few words can be added here about Einstein's theory of the Brownian motion, 
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whose essence is contained in two papers, one of 1905 [26], the other of 1906 [27]. 

At the beginning of the 1905 paper Einstein states "that according to the mole- 

cular-kinetic theory of heat, bodies of microscopically visible size suspended in 

liquid will perform movements of such magnitude that they can be easily observed in 

a microscope, on account of the molecular motion of heat" and he adds: "those move- 

ments are possibly identical with the Brownian motion". The latter had been discovered 

in 1827 but apparently Einstein's information about it, in 1905, was too vague to 

form a definite judgement. 

In the second paper of 1906, Einstein refers to the work of Siedentopf (Jena) 

and Gouy (Lyons) who convinced themselves by observation of Brownian motion that it 

was in fact caused by the thermal agitation of the molecules of the liquid. 

From this moment Einstein takes it for granted that the '~rregular motion of 

suspended particles" predicted by him is identical with the Brownian motion. This 

and the following publications are devoted to the working out of details (e.g. rotary 

Brownian motion) and presenting the theory in other forms. But they contain nothing 

essentially new. 

In his paper of 1905 Einstein argues that there is no reason for limiting the 

validity of the equipartition principle to bodies of atomic and molecular dimensions 

as was already clear from the work of Maxwell, Boltzmann and Gibbs. He points out 

that, on the contrary, there is no difference as far as the equipartition principle 

is concerned whether the particles that are continuosly pushed by the surrounding 

molecules of a fluid are molecules themselves or bodies of macroscopic dimensions. 

Starting from this remark, Einstein established (shortly before Smolukowski [28] 

in Poland developed a different theory) the relationship that connects the average 

displacement in an preassigned direction of a grain suspended in a fluid, and obser~ 

vable to the microscope, with the temperature of the fluid and the time interval T 

(in our notation At) between two successive observations [29]. 

VIII NOISE IN A RESONANT ANTENNA 

In order to clarify the problem of noise, I will consider the case of a cryo- 

genic aluminium cylindrical bar, equipped with a piezoelectric transducer. The choice 

of this case is partly due to the fact that our antennae are at present of this type, 

but also because of its extreme simplicity. Some of the expressions given below for 

the various noise sources contributing to the background are valid only for this par- 

ticular type of antenna. For other resonant detectors some of the contributions are 

expressed by relations different from those given here, so that in general their 
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relative importance can also be different. The list of noise sources considered below, 

however, covers all possible contributions and serves as a reminder of the effects 

that should be taken into account in all cases. 

We start from the equivalent circuit of the antenna specified above with the 

various sources of noise represented by voltage and current generators (Figure 15). 

The circuit elements LI, CI, and RI, represent the bar. V 1 H V B represents its Brow- 

nianmmtion 

2 ~2(2kT/Mm~ ) Q/Qm' V B = (40) 

where Qm is the mechanical quality factor and Q the total (i.e. mechanical + elec- 

trical quality factor) and the coupling constant a has the function of transforming 

the displacement of the end of the bar into a voltage (see Equation (38)). 

_•LI R2 
CI 

> 

i 
C~ 

© 
Vm 

O 

Fig. 15. Equivalent circuit of the fundamental mode of a cylindrical bar equipped with 
a piezoelectric transducer with all noise sources represented by generators. 

The elements C2, R 2 represent the piezoelectric crystal (or ceramic) and V 2 its 

noise described as the Johnson effect of the resistance R 2. Finally VN(V//Hz ) and 

IN(A/{Hz ) are voltage and current noise sources at the input of the preamplifier 

which is connected to the output of the transducer. 

The narrow-band noise of the whole system is the sum of two terms: 

2 2 V 2 (volt 2) (41) 
Vnb = VB + rn ' 



273 

where the first term is due to the Brownian motion of the bar (40) and the second is 

the resonant noise or back-reaction noise, whose importance was pointed out by Brag- 

insky [30]. It can be written as the sum of two terms (using bilateral power spectra) 

where 

and 

V 2 2 2 
rn = V2 + VNN ' (42) 

2 2 4 2 
V 2 = (QCI/2~oC 2) 12 (43a) 

2 2 4 12 (43b) 
VNN = (QCI/2WoC2) N 

correspond to resonant excitation of the bar by the noise currents 12 and I N in the 

piezoelectric ceramic and at the preamplifier input. 

These terms both have the same spectral behaviour as the Brownian noise of the 

bar and, therefore, cannot be separated from it. It follows that the narrow-band 

noise can be interpreted as a pure Brownian noise at an equivalent temperature T 
e 

greater than the physical temperature T, so that we can write 

2 2(2kTe/ML0~ Vnb = ). (44) 

Pizzella [31] has shown that T can be written in the form 
e 

where 

and 

T e = T[I + (~Q/T(Ttr/2I)], (45) 

8 = energy in the transducer 
energy in the antenna 

kTtr = VNI N , I = ~oC2 VN/I N 

C 1 

C 1 + C 2 
(46) 

characterize the properties of the transducer: Ttr indicates its noise temperature 

and I the ratio of the noise impedances of the preamplifier (VN/IN) and the output 

of the electromagnetic part of the transducer (i/~oC2). 

The expression (45) clearly depends on the structure of the transducer, but in 

any specific case the ratio Te/T can be expressed in terms of easily measurable quan- 

tities. Therefore, for any type of resonant detector it is possible to compute Te, 

whose value is an excellent parameter for judging its performance. A second interest- 

ing aspect of T is the following: since T can be easily measured from the output 
e e 

of an antenna (Section IX), a comparison of its measured and computed values provides 
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a very useful test of the actual performance of a resonant detector with respect to 

its design behaviour. 

The w~de-b~rn~ no~se is proportional to the band-width Ag: SAg. 
o 

trum S is also the sum of three terms: 
o 

Its power spec- 

2 
S O = V N + (2kT/~oC 2) tan 6 + I /~ C 2 V2Hz -I (47) 

where the first term is the voltage noise of the preamplifier, the second the Johnson 

noise of the ceramic (R; 1 = ~oC2tan6) and the third is due to the current IN, which 

includes the current noise of (a) the preamplifier, (b) the feedthroughs and (c) the 

cables. In writing (47) we have neglected a small correlation term between V N and 

I N • 

IX THE OUTPUT OF A RESONANT ANTENNA 

In order to understand the nature of the output of a resonant antenna we go back 

for a moment to the Brownian motion of the bar. The fundamental longitudinal vibra- 

tional mode of the bar behaves as an oscillator of angular frequency ~o' with ampli- 

tude and phase varying at random. The same is true also for the gZob~Z no~se of 

the antenna, the square of which is given by the sum of the squares of the narrow- 

band and wide-band noise. 

Therefore, in the absence of disturbances and/or gravitational radiation, the 

output voltage V(t) of the transducer can be represented as a function of time by 

the expression 

V(t) = r(t) exp{i[~ot + ~(t)]} (48) 

where r(t) and #(t) vary at random. 

The expression (48) can be considered as a vector in a complex plane. A complete 

knowledge of V(t) means a knowledge of the two functions r(t) and ~(t), or, equiva- 

lently, of the projections x(t) and y(t)of V(t) on ~wo orthogonal axes traced in the 

same plane. This decomposition of V(t) is obtained by including in the electronic 

chain (Figure 16) two Phase Sensitive Detectors (PSD) in quadrature, driven by a high 

stability oscillator of angular frequency ~o equal to that of the fundamental mode 

of the bar. 

The PSDs generate the output variables 
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x(t) = AI_ ~ 

y(t) --AI_ ~ 

V(t')exp{- (t-t')/to}Sign [cos ~o t'] dt' 

V(t')exp{- (t-t')/to}Sign [sin ~o t'] dt[, 

(49) 

where A is the total amplification of the electronic chain and t an integration time 
o 

connected to the width of the frequency band of the PSDs by the relation 

A~ = t -I. (50) 
o 

Antenna 

~ ~ ~ i  x (t) 

F_ET . . .  Band pass ~ si.~t ~y(t) 
Preamplifier Amplifier I i 

Phase Sensitive 

Detector 

~c 
Analog tape 
to 

Digital 

- Converter 

Fig. 16. Schematic of the data retrieval system. 

The variables x(t) and y(t) generated by the PSD enter an analog-to-digital con- 

verter and are then recorded on a magnetic tape at regular intervals of time At (the 

sampling time). 

The whole system, including bar, transducer, electronics and recorder, is charac- 

terized by three times: 

T = damping time of the antenna; 
o 

t = integration time of the PSD; 
o 

At = sampling time. 

The damping time T o should be greater than t o and At. The integration time t o 

is always chosen by the designer of the experiment (see Section X). Also At can be 

chosen at will, but it should not be smaller than t in order to avoid unnecessary 
o 

correlations between successive recorded values of x(t) and y(t). On the other hand 

if we take At > t we throw away a part of the information at our disposal. There- 
o 

fore the best choice of At is to take 
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At = t (51) 
o 

which reduces to two the characteristic times of the antenna: T = Q/~. and t = At. 
o o 

The Brownian motion of harmonically bound particles has been treated by the clas. 

sical methods of statistical mechanics by Uhlenbeck and Ornstein in 1930 [32]. The 

same topics can be treated by applying correlation techniques [33] which show that 

the variables x(t) and y(t) are stochastic variables of zero mean value 

and variance 

where 

<x(t)> = <y(t)> = 0, 

a 2 = R(0) , (volt) 2 
o 

R(T) = RXX(T) = Ryy(T) 

(52) 

(53) 

is the autocorrelation function of the measured values of x(t) and y(t), 

RXX(~) = x(t' + %) x (t')dt' 
J _ e o  

Ryy(T) = y(t' + T) x (t')dt' 

(54) 

In the present case it is easily shown that 

2 e -Y/Tv + (So/to)e -T/t° , (55) R(T) = Vnb 

where T is the damping time of the potential V(t), which is twice the damping time 
v 

T o of the power of the bar (proportional to V2(t)) i.e. T v = 2To, and S O is defined 

in equation (47). 

From the measured values 

x(t), x(t + At), .... x(t + nat) .... 

n = 0, i, 2...N -i 
o 

y(t), y(t + At) ..... y(t + n t) .... 

(56) 

one can compute, for example, a single sequence of the variable 

r2(t) = x2(t) + y2(t) (volt) 2 (57) 
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i.e. 

2 r 2 r (t),r2(t + At) .... (t + nAt) .... n = 0, i, 2 .... N 
o 

- 1 

which follows the statistical distribution 

F(r 2) = (i/2~) exp - r2/2°2o (58) 

Thus, if we take a large number N of measurements of r 2 in the absence of dis- 
o 

turbances and g r a v i t a t i o n a l  r a i d a t i o n ,  and  draw a s e m i l o g a r i t h m i c  p l o t  o f  t h e i r  s t a t i s -  
2 

tical distribution, we obtain a straight line, the slope of which corresponds to a 
o 

For an ideal detector the measured value of ~ 2 should be equal to the value 
o 

computed from the antenna parameters by means of equations (52), (55) and (47). In 

general, however, (~o2)exp is larger than (~o2) comp and their difference is reflected 

in a difference between the measured and computed values of T . A critical examina- 
e 

tion of ~Te)ex p - (Te) comp]Can provide important hints for improving the experimental 

set-up. 

We can now turn our attention to the central problem; that of disentangling from 

the background discussed above a few possible bursts of gravitational radiation that 

produce certain values, r~, of the variable (r 2) (57). 

As I have pointed out in Section Vli various other disturbances also give devi- 

ations from the statistical distribution (58), which cannot be treated mathematically. 

Their reduction, perhaps even their elimin@tion, can be obtained only be observing 

coincidences between the outputs of two or more far away stations. 

X INTRODUCTION TO ALGORITHMS 

I will now procede to a preliminary discussion of the mathematical treatment of 

noise, which will be taken up again and completed in Pallottino's lecture. 

It is clear from the considerations of the previous section that smaller values 

of r 2 w i l l  become d e t e c t a b l e  by  u s i n g  e x p e r i m e n t a l  s e t - u p s  w i t h  s m a l l e r  v a l u e s  o f  
2 g 

o 

But apart from changes of the instrumentation in this direction, which anyhow 

should be the main goal of the experimenter, one can ask if it is possible to find 

mathematical treatments of the raw data (56) which generate a reduction of the variance 

of the corresponding statistical distribution. The answer is positive if, instead 

of the direot algorithm r 2 defined by (57), other more powerful algorithms are used. 
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A wide class of algorithms is that of the p~ediotive aZgoz,~t~'ns, based on the 
measure of the innovation 

2 [x(t) - ]2 (59) Pi = Xpi(t) + [y(t) - Ypi(t) ]2 

where __Xpi(t) and Ypi(t) are the values predicted for the time t by means of a chosen 

statistical procedure i. 

For example the predictive algorithm of zero order (Z.O.P. is defined by setting 

x (t) = x(t - At) 
po 

Ypo(t) = y(t - At) 

(60) 

i.e. by taking as predicted values at the time t, the value measured at time t - At. 

The predictive algorithm of first order (F.O.P.) is based on the best statistical 

estimate of Xpi(t), Ypi(t) obtained from only the last measurement. 

x. (t) = [R(At)/R(0)] x (t- At) 
pz 

(61) 
Y p i ( t )  : [ R ( A t ) / R ( 0 ) ]  y ( t  - At)  

The most p o w e r f ~  a l g o r i t h m  o f  t h i s  c l a s s  i s  the  W i e n e r - K o l m o g o r o f f  a l g o r i t h m  

wh ich  uses a l l  p a s t  and f u t u r e  d a t a  f o r  max im iz i ng  the  s i g n a l  t o  n o i s e  r a t i o  [ 3 4 ] .  

I w i l l  no t  d i s c u s s  t h i s  a l g o r i t h m :  i t  w i l l  be examined i n  d e t a i l  by  P a l l o t t i n o .  I 

have ment ioned  i t  o n l y  as a f u r t h e r  example o f  t he  a l g o r i t h m s  o f  t h i s  c l a s s ,  a l l  o f  

wh ich  have the  v e r y  i m p o r t a n t  p r o p e r t y  t h a t  t h e i r  s t a t i s t i c a l  d i s t r i b u t i o n s  f o l l o w  

laws s i m i l a r  t o  [ 5 8 ] ,  i . e .  

This is given by 

where 

F(p~) = (!/2~i 2) exp - 

Oi2/Ki < 602 

pi2/2~i 2 , (62) 

(63) 

Here K. is a normalization factor which takes into account the shape of the electric 
1 

pulse transmitted bythe PSDs. 

Figure 17 shows the results obtained by the Rome group in a few hours measure- 

ments with a test antenna of M = 24 kg and ~ = 7523 Hz. The three straight lines 
o 

are obtained by a least square fit to the experimental histograms which are the result 

of the direct, first order, and Wiener-Kolmogoroff algorithms applied to the same set 

of raw data. 
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Fig. 17. Frequency distribution of 
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three different algorithms 
(M = 24.4 kg,v 0 = 7523.69 
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The figure shows the validity of both the statistical law (62) and the inequali- 

ties (63). A remark should be added in regard to the first order predictive algorithm 

whose variance is 

2 e-~ At/T O + 2(l-e-l)So/At 
a I = 

where the factors e -I and 2(l-e "I) are normalization factors (K1) due to the detailed 

shape of the pulse given by our electronics. The first term (narrow-band noise) is 

proportional toAt, while the second (wide-band noise) is proportional to 1/At. There- 
2 

fore ~i can be minimized by a convenient choice of At. Such an optimization proce- 

dure ~G8 not been applied to the F.O.P. algorithm data of Fibre 17 in order to demon- 
2 

strate directly the difference between these various algorithms. By optimizing ~l 

the distribution of the F.O.P. algorithm would he much closer to that of the Wiener- 

Kolmogoroff algorithm, as will be shown by Pallottino, (this ~olume). 

What I have said is enough for understanding the importance of the adoption of 

a well chosen algorithm. 
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XI MINIMUM DETECTABLE INTENSITY AND INSTRUMENTAL SENSITIVITY 

For any specific experiment we should distinguish between the minimuJn det~c~ble 

intensity of incoming gravitational waves and instr~nental sensitivity. The first 

of these two quantities incorporates, besides the spectral energy density of the in- 

coming pulse (in erg cm -2 Hz -I or G.P.U.), also the signal to noise ratio, i.e. the 

ratio of the statistical frequency of occurrence of the signal to the frequency of 

fluctuations of the total noise background. The instrumental sensitivity involves 

only the signal to noise ratio irrespective of the frequency of occurrence of the 

gravitational wave pulses we are looking for. 

We start from the distribution (62) of the stochastic variable p~ (59) obtained 

during a given total time of measurements T with a sampling time At [24]. The num- 
m 

bar of times the signa~ due to thermal and electrical noise is larger than a given 
2 

Qi is given by 

where 

N{~ 0i 2} = NoeX p - pi2/2Oi 2, (64) 

T 
m 

N = 
o At 

(65) 

is the total number of observations recorded during T m. 

Let us assume ~at during the time Tm, NG{2p~} gravitational wave pulse of "ampli 

tude" ~p~ fall upon the detector. In order to be able to observe these signals it 

is necessary for NG{~p~} to be equal to or greater than the fluctuations of N{~p~} 

computed from (64), i.e. 

2 @/N{~p~} (66) NG{~P i } 

where 8 is a number expressing the desired confidence level. For example, for a 99% 

confidence level, @ = 3. 

From (66) and (64) we obtain 

2 
Psi ~ 202~' (67) 

2 
where the index s has been added to underline the fact that Qsi is due to the signal 

and 

£n[e2No/NG{~Qi2}] _ > 2 = = 2 £n 8 + £n N o 2 £n NG{_Qi} (68) 
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is a statistical factor. Its dependence on the measuring time T and sampling time 
m 

A t  c a n  b e  m o r e  c l e a r l y  s e e n  i f  n o a n d  n G a r e  e x p r e s s e d  i n  t e n s  o f  t h e  c o r r e s p o n d i n g  

rates of occurrence 

= 2 
n o = No/T m = At -I ; n G NG{>Pi}/T m. (69) 

We obtain 

= 21n@ - 2in nG{~p~} - InT m + ~nAt 

= 2~n@ - 21n nG{~Q ~} - in N O . 

(70) 

The last expression becomes, for @ = 3 (99% confidence limit), 

~99% = 2.1972 - 2 In nG(>Oi2) - in N O . (71) 

2 . 
At this point we express Psi in terms of the amplitude of the oscillation (21) 

produced by the incident gravitational burst. Using (38) (18a) and (32) we obtain 

the amplitude V s of the voltage at the output of the transducer [34] 

V s = (C~0ol/4) (hoTg) 

= (C~oL/~2) (hoTg) 

= (~Vs/~) (hoTg) • 

(72) 

The output of the PSDs is easily obtained assuming that the signal (72) is in 

phase with the oscillator driving the PSDs, since in this case one has 

x s = K/~iV s = K/~i~ (VSI~); (hJg) 

YS = 0 
(73) 

where K. is a normalization factor determined by the electrical characteristics of 
1 

the PSDs. Its value, which can be easily derived for any chosen algorithm [34], de- 

for the direct and Z.O.P. algorithms, and on SO/(2ToV ~)_ for the Wiener pends on to/T o 

Kolmogoroff algorithm. 

From (73) we deduce 
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2 2 2 2 = Ki 2 2 2 
Psi = Xs + Ys = Ki VS (Vs/~) (hoTg) (74) 

which, combined with (67), becomes 

(hoTg) 2 Z (~/CC¢~) 2 2ai2~/K i 

or using (27) 

(75) 

F(~) ~ (WC3/32G)(~o/Vs~-2 2Oi2~/Ki 

(3c3/32G) (~L)_2 2Oi2~/Ki . (76) 

The instr~ental 8~nsitivi~ f(9) is obtained by dividing (76) by the statistical 

factor ~, i.e. 

f(~) H F(V)/~ ~ (~3c3/32G) (0~L)-2 2Oi2/K i. (77) 

From the above derivation we see that f(~) represents the spectral energy den- 
2 

sity of a standard pulse (20) which produces, in the absence of noise, a Osi equal to 

or greater than the mean square values of p~ due to the noise alone, i.e. ~ 2~. 

It is convenient to define the ~ff~otiv~ temperat~e T (i) eff of the antenna plus 

algorithm as the temperature at which the Brownian motion of the antenna is equal to 

~/K i 

VB(Tef f(i)~• = ~2(2kTef~i)/M/0o 2) = ci2/Ki . (78) 

By comparison with (44) we see that 

2 
Tef~i) = T e ~i2/Ki Vnb . (79) 

From (77) and (78) we recognize that 

f(~) > kT (i)/0 
- eff GW (80) 

where OGW is the 'bar cross section (33). 
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For aluminium bars at T = 4.2 K(V s = 5,400 m/s) we obtain [24,34,35] 

(i) 
f(~) > 782 Tef f /~g GPU. (81) 

T (i) is deduced from the slope of the observed statistical The experimental value of eff 
2 

distribution of the values of 0i computed from the raw data (56) using the chosen 

algorithm. 

XII MATN VEATURES AND PERFORMANCE OF THE M = 390 kg CRYOGENIC ANTENNA OF THE ROME 

GROUP 

The group working in Rome on the development of resonant detectors is formed by 

subgroups belonging to several laboratories as shown below: 

universit~ of Rome: E. Amaldi, C. Cosmelli, S. Frasca, G.V. Pallottino, G. Piz- 

zella, F. Ricci, E. Serrani; 

Laboratorio del Plasma nello Spazio (CNR), Frascati: p. Bonifazi, F. Bordoni, 

V. Ferrari, F. Fuligni, U. Giovanardi, G. Iafolla, G. Marti- 

nelli, P. Napoleoni , B. Pavan, S. Ugazio, G. Vannaroni; 

Laboratorio Elettronico dello Stato Solido (CNR, Rome: s. Barbanera, P. Carelli, 

G.L. Romani; 

Istituto Elettrotecnico Nazionale Galileo Ferraris (Turin): s. Leschiutta 

Pizzella is the group leader. Leschiutta participates in the activity of the 

group by providing the competence and the instrumentation for the Universal Time (U.T.) 

measurements required for the determination of coincidences with other stations. The 

subgroup at the Laboratory of Solid State Electronics, under the guidance of I. Modena 

works on the development of transducers based on the use of SQUIDs. Pallottino and 

Bordoni, with the help of younger staff, take care of the electronics. Bonifazi and 

Ferrari, under the guidance of Pizzella, develop software for coincidences and the 

treatment of the data. Giovanardi, with the help of Ricci, takes care of the inter- 

mediate antenna (see below) and Cosmelli of the activities around the small antennae. 

The final goal of our experiment is the operation at a temperature less than IK 

of a 5000 kg aluminium cylindrical antenna, the output data of which will be analyzed 

in coincidence with those of similar instruments installed at Louisiana State University 

(group leader Hamilton) [36] and Stanford University (group leader Fairbank) [37]. 

For various technical and financial reasons we decided in 1974 to procede to the 

final goal by steps. These consisted in the construction of three "small" (M = 20-30 

kg) and one "intermediate" (M = 390 kg) aluminium cylindrical bars operated at low 

temperature: initially at T = 4.2 K, later at T << IK. 



284 

The small antennas have been used in the past, and will be used in the future, 

for testing various techniques. Among the problems we investigated in the past I 

should recall: (a) the development of a magnetic suspension for the larger antennae; 

(b) the study of the temperative dependence of the frequency of the Al-bar, of its 

mechanical merit factor Qm and parameters of the equivalent circuit; (c) the testing 

of data handling procedures based on various algorithms. All these results have al- 

ready been published and/or communicated to International Conferences [38,35]. 

I will devote this final part of my lectures to a short review of results obtained 

a few months ago with the intermediate antenna (Figure 18, 19, 20) because they can 

provide a realistic picture of the present state of the art [39]. 

Fig. 18. Intermediate bar of M = 390 kg with the piezoelectric ceramics mounted in a 
slot which contracts at low temperature, providing a very good coupling. 
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Fig. 19. Intermediate bar mounted inside the cryostat. Notice the layers of aluminized 
mylar and "cerex" for improving the thermal insulation. 

The intermediate antenna, having a fundamental frequency of ~i ~ 1795 Hz, was 

cooled for the first time to T = 4.2 K in June 1977. On this occasion we measured 

the various parameters of its equivalent circuit. 

We started to cool it for the second time at the end of May 1978 and reached 

T = 4.2 K on June 10, 1978. Its operation at low temperature was continued until 

July 18 i.e. for a total of 39 days. During this period output data from the antenna 

was recorded for more than fifty per cent of the time, the remaining time being employ- 

ed in refilling the cryostat, testing the performance of the installation and trying 

minor modificationsaimed at improving the quality of the data. 
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This data was analyzed in detail with a view to understanding the origin of some 

disturbances and finding pre-analysis procedures which could be systematically applied 

for establishing the quality of future data collected over long periods of observation. 

Fig. 20. The cryostat of the intermediate bar during cooling down. 

Most of the time, the bar temPerature was T = 4.2 K. At the end of June we 

cooled the bar to T = 1.5 K, by pumping on the liquid helium bath. Although we pumped 

for only a few hours, this was sufficient for measuring the values of the antenna 

parameters and long enough for the derivation of the correlation functions of the 

variables x(t), y(t) [T m = 8 hours]. 

The measurements reported below refer to the fundamental longitudinal mode (~i = 

1795 Hz) as well as to a harmonic at frequency 10159.69 Hz that, tentatively, we 

interpret as the 8th longitudinal mode, whose computed frequency is ~8 = 10158.04 Hz. 

The main reason for recording the output of even vibrational modes of a bar is 

that the gravitational radiation ican excite only odd modes which leave the center of 

mass of the bar at rest (quadrupole modes). Therefore the output of even modes can 
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provide, in principle, a kind of internal veto for bar excitations o5 origin other 

than gravitational waves. 

Following a few modifications of the experimental set-up (in particular an improve- 

ment of the mechanical filters inserted between the whole cryostat and its antiseis- 

mic base) the quality of the data collected in July is superior to that of the June 

data [39]. 

For the first mode we found 

= 1.0 nV//Hz; V N = 0.8 nV/~z; I N = 7.1 fA//Hz 

and for the so called "8th mode" 

= 0.70 nV//HZ; V N = 0.69 nV//Hz; I N = 7.1 fA//Hz. 

The output data was recorded with a sampling time At = isec. 

In Figure 21 I show the distribution of the zero order predictive algorithm (60) 

computed from the fundamental mode data collected at T = 4.2 K in 224.7 hours during 

July after elimination of any sample fulfilling the condition 

x(t) and/or y(t) > 9 volt. (82) 

This value has been chosen because it is close to the saturation level of the ADC in 

the data aquisition system (± 10 volt). 

The dot with an arrow on the right hand side of the figure indicates the total 

number of samples equal to or greater than the corresponding abscissa. 

The straight line is obtained by a best fit to the first i0 measured points of the 
2 

histogram. The deviation from the straight line observed for pz/Kz > 20-30 K is due 

to disturbances. The cut (82) for the July data discussed here reduces the number 

of hours of observation by 1 hour (0.45%). 

As I said before, we have started to study preanalysis procedures to be applied 

systematically to our data. We decided to base these procedures on the use of the 

ZOP algorithm for two reasons. 

The first is that with the sampling time we have used, very close to the optimum 

value mentioned at the end of Section X, more elaborate algorithms only produce a 
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very small improvement. The second argument in favour of the ZOP algorithm is its 

intrinsic simplicity, both from the computational and intuitive point of vieW. 

NoF(O:IK,  

10 ~ 
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T,~f= 1.74 K 

10 s 

10; 

10 

I I I. I \ I I I 

10 20 30 40 50 60 70 K 
t. , , , , , , , ~IK, 
0 20 40 60 80 100 120 140 GPU 

Fig. 21. Frequency distribution of the ZOP algorithm of the fundamental mode 
data recorded in 224.7 hours during July 1978 at T = 4.2 K. 
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Fig. 22. Values of Tel f computed hour by hour 

(T = 4.2K). BIack boxes indicate when 

C 2 w a s  m e a s u r e d  

Figure 22 shows an ex- 

ample of the effective temp- 

erature T z eff' computed from 

the slope of the p; distri- 

bution, hour by hour, for 

seven days selected from 

the measurements made dur- 

ing June and July 1978. The 

notation xL(x = i, 2, 3...) 

indicates the run number 

and the month of July. The 

black boxes given in the 

figure show when the capac- 

ity C 2 of the transducer 

(Figure 15) and a few other 

parameters were measured. 

The value of C 2 provides a 

very sensitive thermometer 

(17 pF/K). 

Figure 23 shows, as an 
Z 

example, the value of Tef f 

computed, hour by hour, in 

two ways: from initial slop% 

as in Figure 22, and from 

the mean value of p~/K z 

obtained from the same data 

(i.e. satisfying condition 

(82)). The difference bet- 

ween the two histograms is 

an indicator of the import- 

ance of disturbances. 

The data collected dur- 

ing July has a very high 

quality, except after 21.00 

hours, when it starts to be 

considerably disturbed and 

continues to be rather poor 

during a large part of the 

successive day. We were 
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not able to trace the origin of these disturbances, 

T . .  K 

B 

4 

R 

1 5  J u l y  1 9 7 9  

6 

2 . 2 K  

1 . 9 K  

0 

T . t t  K 

9 

4 

2 

1 8  J u l y  1 9 7 8  

4 . 3 K  

1 . 9 K  

O 

0 6 12  1 8  2 4  h 

Z 
Fig. 23. Example of comparison between the hQurly valueso of Tef f computed from the 

initial slope and from the mean values of p~.Kz(9~ = 4.2 K). Shaded areas 
indicate disturbances. 

Figure 24 similar to Figure 23 shows an example of a more quiet interval of time. 
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Fig. 24. Similar to Figure 23 for a period of time with less disturbances during the 
day and the night (T = 4.2 K). 

Figure 25 shows the normalized autocorrelation function (n.a.f.) at T = 4.2 K. 

It allows the determination of three parameters: the value of T v = 2To; the ratio of 
2 

the narrow-band Vnb to the total noise; and the possible beat frequency between the 

antenna and the '~ynthesizer" driving the PSDs. From the fact that the semilogarithmic 

plot of the measured n.a.f, is a straight line with slope Tv, we conclude that: 

(a) the wide-band term in (55) is much smaller than 2 Vnb; 

(b) there is no appreciable beat since this would appear as an undulation of 

the curve at large values of T. 

! 

0.9 

O8 

0.7 

O6 

0.5 {0 r o 2'0 3'0 4'o 

Fig. 25. Normalized autocorrelation function obtained from July data (fundamental 
mode, T = 4.2 K). 
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For antennas with a large value of Q, it is necessary to collect data for a very 

long time (Tm) , in order to reduce the statistical errors of the estimator of the 

n.a.f, which, in its turn, determines the errors on the values of the parameters men- 

tioned above. Clearly the number of uncorrelated samples collected during T is det- 
m 

ermined by the ratio Tm/T v- 

2 
Figure 26 shows the distribution of the Wiener-Kolmogoroff algorithm pJK w of 

the July data (.fundamental mode, T = 4.2 K). The effective temperature 

T w = 1.53 K (83) 
eff 

is deduced from the slope of the straight line, which is again the best fit to the 

first I0 points of the histogram. It differs by + 0.17 K from the value computed by 

means of (79): T w = 1.36 K. 
eff 

The value (83) is obtained from 225 hours of measurement collected in 19 days. 

It can be compared with the effective temperatures obtained in the experiments of the 

first generation detectors of greater sensitivity: 

Tel f = 36 K: collaboration Bell-Telephone-Rochester [40] 

Tef f = 7.3 K: Munich group [41]. 

Only the Stanford [42] and Maryland groups [43] obtained lower effective tempera- 

tures (Tef f = 0.39 ± 0.06 K and 0.49 K respectively) but only for a few hours. By 

selecting a few hours during our 39 day measurement we could obtain values of T W 
eff 

closer to the theoretical value mentioned above. The limitation in Tef f is determined 

by the transducer and electronics at present in use. The Perth group, using its super 

conducting resonant cavity transducer, has an indication of an effective temperature 

of about 40 mK (see Blair's lectures - this volume). 

The instrumental sensitivity of our antenna, computed by means of (81) is f(~) 

~ 3 GPU, corresponding to h ~ 2 x 10 -17 . We are clearly entering the upper part of 

the left side region of Figure 5. 

In order to simulate the effect of the use of two equal antennas in coincidence, 

we have computed the distribution of the ZOP algorithm by combining the data of our 

antenna with the same data shifted by 500 seconds. The results are shown in Figure 

27. The effective temperature is reduced by a factor 2 as expected. 

We pass now to examine very quickly the results obtained with the so called 8th 
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Fig. 26. Distribution of the Wiener-Kolmogoroff variable pJK w deduced from the 

July data (fundamental mode, T = 4.2 K). 
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Fig. 27. Distribution of autocoincidences from the ZOP algorithm data (Fig. 21) 
w~th a shift of 500 seconds. 
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Fig. 28. Distribution of the Wiener-Kolmogoroff algorithm for the 8th longitudinal 
mode (V 8 = 10.159 Hz, T = 4.2 K). 
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longitudinal harmonic of our bar (~8 ~ 104 Hz). Figure 28 shows the distribution of 

the Wiener-Kolmogoroff algorithm from which we deduce an effective temperature 

T W = 1.43 K, which should be compared with the computed value (T~ff)comp eff = 1.20 K. 

Although we are not absolutely sure that our identification of this mode as the 

eighth harmonic of the bar is correct, the agreement between the measured values of 

TWeff for ~i and 98 is certainly a gratifying feature, of our data. 

25 ~ 50 T~$1 

Fig. 29. Normalized auto-correlation (A) and cross-correlation (B) funct- 
ions of the variables x(t) and y(t) for the harmonic of frequency 

~8 = 10.159 Hz (T = 4.2 K) 

Finally Figure 29 shows the auto-correlation (A) and cross-correlation (B) funct- 

ions of the variables x(t) and y(t) for the 8th harmonic. By fitting the observed 

points with the appropriate theoretical expressions (not given here) we find that the 

data at this frequency is affected by a beat of frequency AV = 6.2 x 10 -3 Hz. 
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I INTRODUCTION 

In these lectures I want to review formalisms for analysis of resonant gravity 

wave antenna - transducer systems. I will be making use of published and unpublished 

works from the gravity wave research groups at Stanford [i], Maryland [2], Louisiana 

[3], Rochester [4], Moscow [5], Glasgow [6], Munich [7] and Rome [8] with particular 

emphasis on Giffard's elegant impedance matrix method [9]. 

Starting from simple equivalent circuits we will derive the effective noise con- 

tributions of the Brownian motion of the antenna, back reaction of the transducer on 

the antenna, and series noise in the transducer. We will see that there follows an 

optimum measuring time at which transducer noise is minimised, and in terms of Hef- 

fner's quantum limit formula for linear amplifiers [i0], we will derive the minimum 

detectable equivalent energy in a gravity wave pulse. By deriving the linear ampli- 

fier quantum limit, the need for quantum non-demolition detection [ii] will become 

apparent. Comparing these limits with existing systems it will also be apparent that 

present detectors are still far from reaching these limits, although the way appears 

to be reasonably clear as to how to approach the quantum limit within about an order 

of magnitude. 

To characterise transducer performance we will introduce a figure of merit, (FOM), 

defined by 

FOM = quantum limiting energ~ sensitivity 
actual equivalent energy sensitivity 

For a linear transducer FOM ~ i, whereas for a quantum non-demolition transducer FOM 

may be greater than i. 

In the limited time I have available I will concentrate my attention on para- 

metric upconverter transducers of the type being developed at UWA, Moscow, Louisiana 

and Tokyo. I believe with present technology that these are the only devices capable 

of reaching FOM values close to unity, although with further development SQUID's will 

also probably be able to attain similar sensitivity. 
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II EQUIVALENT CIRCUITS 

Let us start with a schematic gravity wave antenna-transducer system illustrated 

in Figure !. The antenna is a high Q mechanical resonator. The transducer takes a 

J F, Antenna Ul Traniduce~~ ~ 

Fig. i. Gravity wave antenna-transducer 
system. 

mechanical input, and produces an 

electrical output. The antenna exerts 

a force F 1 at velocity U 1 at the input 

of the transducer, leading to voltage 

V 2 and current 12 at the output. The 

choice of F 1 and U 1 rather than other 

mechanical parameters ix important as 

the equations in force and velocity 

have a one to one correspondence with 

equations of voltage and current. 

Hence we can easily take the actual 

system over to an all electrical or 

all mechanical equivalentcircuit. 

First, the simplest equivalent circuit we can write is one in mixed mechanical 

and electrical parameters, as shown in Figure 2. 

I J 

/ 

. . . j ; .¢ . . ,  
Trans. ~ 0 

Fig. 2. Mixed equivalent circuit for the antenna-transducer system. The forces f and 
f represent the gravity wave signal and the Nyquist force arising from t~e 
H 

damping term H. 

The distributed mechanical resonator has been replaced by an equivalent 'lumped 

parameter' resonator, and the tranducer is left in a generalised form. 

The resonant frequency of the damped harmonic oscillator that is equivalent to 

the bar (in the absence of the transducer) is given, by w a = (K/M)1/2 and the damping 

time T a is given by T a = 2M/H in the usual way. The only difference between the actual 

antenna and the model is that M is half the actual antenna mass. 

Now following electrical engineering practice for 2-port devices we characterise 
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the transducer by an impedance matrix, defined by the following equations in frequency 

space: 

, 

( i )  

Here Zll is the (mechanical) input impedance of the transducer, and ZI2 , which relates 

currents at the output to forces at the input, is the reverse transductance. Z21 is 

the forward transductance, and Z22 is the electrical output impedance. Note that ZI2 

and Z21 are mixed mechanical - electrical quantities, the latter a measure of the effec- 

tiveness of the device as a transducer; the former a measure of its ability to couple 

noise from the output back to the input. 

The equation of motion for this mixed system is given as follows 

KIUl(t)dt+MUl(t)+HUl(t)+ZllUl(t)+gl212(t)+fH(t)+fx(t) = 0. (2) 

We have included the Brownian force fH and the signal force fx' and since we will be 

looking for time independent harmonic solutions it is convenient to express all quanti- 

ties in frequency space. If we replace the mechanical quantities in (2) by their elec- 

trical equivalents (K ÷ l/C, M + L, H ÷ R, fx + Vx and fH + vR' the Nyquist noise of 

the resistor R) we obtain 

II(~)/j~C+j~LII(~)+RII(~)+ZIIII(~)+ZI212(~)+VR(~)+Vx(~) = 0. (3) 

The equivalent circuit which this equation describes is as shown in Figure 3 except 

that in addition to equation (3) we have added voltage and current noise sources e 
n 

and i to characterise the amplifier noise. 
n 

Fig. 3. Electrical equiva- 
lent circuit for 

T ran s d uc e r antenna- transducer 
~ ~ - - - ~  system 

k : 2 J  ~ ~ . . . . . . . . . . . . . .  
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The voltage sources v x and v R are signal and noise voltages respectively. The ampli- 

fier current and voltage noise sources enable the amplifier to be considered ideal in 

the usual way. 

In general ZII and Z22 have real and imaginary parts: however, we will find it 

useful later to make certain assumptions regarding them. The equations defining the 

impedance matrix are now 

VI(~) = ZIIII(~) + Z1212(~) (4) 

V2(~) = Z21II(~) + Z2212(~) + en(~) (5) 

if V 2 is defined as the voltage across the ideal amplifier input. 

(3) it follows that 

-(Z1212(~) + VR(~) + Vx(~)) 

Ii(~) = jwL + R + ZII + I/j~C 

Then, from equation 

(6) 

Substituting (6) into (5) we then obtain an expression for the output voltage V2: 

[ZlZ~2~,~) + VRC~) + VxC~) ] 
V2(~) = -Z21[" j- ~ ~ R ~ Z~I~ ~/~ "J + an(W) + Z2212(~). (7) 

Now we make our first simplifying assumption: that the input impedance of the ampli- 

= and fier is much larger than Z22. Then 12 i n 

[Zl2in(~) + VR(W) ÷ Vx(~) ] 

V2(~) = -Z21L" j- ~ ~ R ~ Z~I ~ ~ / ~  J + en(~) + Z22in(~). (8) 

III NOISE ANALYSIS 

In the absence of signals Vx(W) it is clear that the noise described by (8) has 

a narrow band component given by the firstterm (the denominator is the harmonic oscil. 

lator response function) and two wide band terms. Note that i has reucted back on 
n 

the resonator and is therefore now included in the narrow band noise. This back reac- 

tion is proportional to the reverse transductance of the transducer: any transducer 

design, as we will see later, should try to minimise this term. 

Since in practice the antenna Q is high we can use a narrow band approximation 

for ~ z ~ . Equation (8) can be further simplified if we define loaded resonant fre- a 
quency ~L' loaded Q, QL and loaded relaxation time T L by the following equations: 
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2 
~L = I/L'C , L' = L + Im{Zll} , 

QL = ~L L/(R + Re{ZII})'TL = 2L/(R + Re{Zll}). 

(9) 

Then the noise component of V2(~) is 

v2n(~) 3~Z21 IZl2in(W)-~----~ -- ~ +  VR(~) "I 

L' [~ - ~L 2jW/TL) 
+ en(~) + Z22in(~). (i0) 

In practice ~L ~ ~a' since the transducer produces negligible frequency shift in the 

antenna. Furthermore for frequencies ~ ~ ~a' v2n(~) simplifies as follows:- 

v2n~) -Z21k [Zl2inC~) + vR~) 1 
2L' [ 1 + j(~-~L) TL J + en(~) + Z22in(~)" 

(11) 

The explicit dependence of the accelerometer input impedance is dropped by using ~L' 

T L and QL' thus incorporating the effect of ZII into the antenna parameters. The 

accelerometer output impedance Z22 is less easy to eliminate as we shall see below. 

It is convenient to express the noise from the transducer in terms of the doublesided 

spectral density of the output noise voltage Sn(~) , which we obtain by taking the squa- 

red modulus of equation (ii) and using a ± sign to include the negative frequency Loren. 

tzian filter response. Cross terms containing uncorrelated noise sources are elimi- 

nated but the Z22 term of equation (ii) introduces complicated terms in the transfer 

impedances. One can assume that Z22 can be so transformed that it tends to zero, but 

since it should in practice be matched to a transmission line this is hard to realise. 

We find 

IZ2112TL 2 ~ZI212Si(~)+ SR(0~.) ~ s (~0) 
S (~) . . . . . . .  e 

n 4L'2 b 1 + (0~+t0a) 2TL2 _I + 1 + (0~+0Ja) 2Tf2 

I Lz22 L2 ~L ~z21Zl2Z~2 ÷ zhz~2z22)- I 
+ s i (~) 

1 + (0~+-0~ a) 2Tf2 2L' 1 + (0~+0~ a) 2TLT f 

(12) 

In obtaining this result, we have assumed that the wide band noise has been filtered 

by a Lorentzian filter of time constant Tf. For the time being let us neglect this 

cross term, as others have done [9] and assume Z22 = 0. Afterwards we can go back 

and insert the correction term in the final equations. 
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Definition of X, Y and ~n: Noise derived by the linear al#orithm 

The usual practice for analysing a narrow band signal such as v2n(~) is to define 

two symmetrical variables X and Y which are slowly varying functions of time, defining 

the instantaneous amplitude and phase of the signal: 

= t + Y(t) sin W t. V2(t) X(t) cos 0J a a (13) 

Clearly if V2(t) = A sin(0Jt + 4) , A and ~ are defined as follows: 

A(t) = (X 2 + y2) i/2, 

~(t) = tan -I X/Y . 

X and Y are simply obtained from a signal in practice by phase sensitive detection, 

using in-phase and quadrature reference signals from a stable reference oscillator 

as shown in Figure 4. 

F 
~(t) sin(.tq,(t)) 

F 

oX 
) 

I sinwt 

OSC. / 

90' J sln(wt. ~) 

oy 

Fig. 4. Scheme for extracting variables 
X and Y from the transducer 
output signal. 

From X and Y we can define a quantity ~ describing the fluctuations in X and Y in a 
n 

time T : 
s 

An2 = [X(t) - X(t-T s), ]2 + [Y(t) - Y(t-T s) ]2. (14) 

Since X and Y are symmetrical variables, they have identical noise spectra, Sx(~), 

and instead of peaking around ~ as does S (~), they peak around zero frequency. That 
a n 

is 

21Z2112TL FZI212Si (~) + SR(~ I 2Se(~) 
s (~) . . . . . .  + 2 2 ' (15) 

4~2 h 1+ 2~2 l÷~Tf 
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so that ~ Sx(W_~a) + 1 2 2 Sx(~+~a) = Sn(~)" (16) 

Now the time evolution of X(t) and Y(t) is given by the autocorrelation function Rx(t) 

which is simply the Fourier transform of S (~) : 
x 

Rx(t) : 2~ll Sx(~)e-i~tdm 

i~ Se(~a)e-t/ef , (17) IZ2112TL 24L 2 eLI [IZl212Si(~a) + SR(~a)]e-t/TL + ef 

where we have used the standard integral 

~0£ os ~ -a 

1 + a~ 2 e 

and the fact that the noise spectra are wideband compared with the measurement band- 

width. From the definition of the autocorrelation function, the change in X in any 

sampling time interval • is given by 
s 

[X(t) - X(t-Ts)] 2 = 2[Rx(0) - Rx(T s) ]. 

Then, since X and Y are symmetrical variables, it follows from equation (14) that 

2 
A 
n = 4(Rx(0 ) - RX(eS)). (18) 

Using this result in equation (17) we obtain 

2 eL 
n = 7 IZ2iI2[IZI212Si(~a) + SR(~a)](l-e-TS/eL) 

4 Se(00a ) (l_e-YS/Tf) , 
+ ef 

(19) 

and by making a first order approximation for the exponential 

2 2 
2 I 211 es Iz211 Iz1212 s 

An 2 SR(°Ja) + 2 Si (C0a) 
L L 

4T 
s 

+ ---~ S e (~a)- 
T 

(20) 
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For simplicity we now set T s = ef, (a situation that is easily achieved in practice) 

4--Se(~a). so that the last term in equation (20) becomes es 

IV NOISE MINIMISATION: OPTIMUM SAMPLING TIME 

2 2 A 2 where 2 The three terms in A n can be divided into AnB + nT AnB originates from 

the Brownian motion of the antenna and A 2 is noise originating in the transducer. 
nT 

First let us look at A 2 This noise is inherent in the antenna except in that 
nB" 

its Q may be loaded down by the accelerometer. In terms of our electrical model, 

SR(~) is given by the Nyquist formula 

SR(~ ) = 2kTaR (21) 

2L 
where R =-- . 

e L 

2 
Therefore AnB 

1~2112 2= 
- -  2kT --e 
L 2 a e L s 

(22) 
4kTalZ2112 T s 

L • L 

Now look at A 2 
nT : 

2 1~21121~1212 
nT 2 T s Si(~a) + T4-- Se(~a ) . (23) 

L s 

If we minimise A 2 with respect to T , we find an optimum sampling time 
nT s 

r 4 Se(~°a)L2 ~ ~ 2L ~ 

es,°P t = L Z21~21ZI21----~ Si(LOa) l = I ~ I /  
(24) 

Alternatively we can define an optimum noise resistance Rop t given by 

/~e(~a ) Iz2xl IZl21 
% t  = 1 2,. es (25) 

This last relation enables us to optimise an accelerometer design about a given 

sampling time. 

It is always possible to choose an optimum sampling time given by equation (24) 

(even if sometimes it may not be useful) so we can use this result in equation (23) 
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to specify the minimum possible transducer noise level: 

2 4 Iz2111z121 
l~nTlmin = L W 

(26) 

where W is the effective amplifier noise energy given by /Se(~a) Si(w a) . Since the 
2 

Ts,op t value also acts on ~nB' we can combine equation (26) with equation (22) to obtain 
2 

the antenna-transducer system minimum noise level IA n Imin given by 

8kT a IZ211 4 Iz2111Zl21W 
IAn21min = ~L IZ-~'21ROpt + L (27) 

Inclusion of Z99 in Noise Analysis 

We saw that it is not generally a good approximation to assume Z22 = 0. By keep- 

ing Z22 in the analysis one finds a noise source independent of sampling time as well 
-i 

as a modified T dependent source due to some of the back reaction noise coupling 
s 

through the output impedance: 

2 Iz2112 
A 

n 2 
L 

- -  [IZI212S y4--[Se(~a)+IZ2212Si(~a)] i(~a)+SR(~a ) ]T s + 
s 

2 
- ~ (Z21ZI2Z~2 + Z~IZ~2Z22) Si(~ a) 

(28) 

2L 
 sopt ° / opt2÷I 2212 (29) 

That is, a finite Z22 increases the noise and increases Ts,op t. In practice one may 

try to match both Z22 and Rop t to a transmission line. Ifthis is done without further 

transformation T would be increased by a factor of /2--above the value determined 
s,opt 

for the idealised case. 

V NOISE REFERED TO TRANSDUCER INPUT 

We have characterised the antenna - transducer system by equivalent noise sources 
2 

SR, S i and S e. A n is one measure of the output noise, obtained according to the so 

called Linear Algorithm. The quantity actually measured in an experiment is (X, Y) 

and as Pallottino has shown [12], other algorithms give slightly different results. 

It is convenient to refer the noise back to the transducer input by deriving new equi- 

valent noise sources S u and Sf, the velocity and force noise sources required to give 

rise to the same measured output noise. 
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If we return to the approximation Z22 

V2(~) = Z21UI(~) 

= 0, we can write 

(30) 

Then the total output power Pout in a bandwidth B is given by 

IZ2112 2 Se(~a ) 
Pout R U 1 + ~ B 

IZ2112 [ B Se(t0a) ] 
R U12+~Z~ ] 

(31) 

Thus we identify the second term with the equivalent velocity noise S (~) u 

Su (~) = Se(~a)/IZ2112" (32) 

Similarly, in the limit ZII = 0, the equivalent force noise is 

Sf(~ a) = IZI212 Si(~a). (33) 

Substituting these results into equation (20) we obtain the condition for the 

antenna-transducer noise referred to the transducer input: 

2 
An 4kTaTs Sf(~a)Ts 4 

_ _  + - -  + SU(~ a) 
IZ2112 LTL L 2 ~s 

(34) 

in the usual situation where the filter time constant Tf sets the measuring time. 

quantity An2/IZ2112 is the equivalent (velocity) 2 fluctuation at the antenna input 

obtained by the linear algorithm. 

The 

VI EQUIVALENT ENERGY SENSITIVITY 

A gravity wave deposits power into an initially stationary antenna, given by [13] 

dt 27 _ (~0) f(0]) d(~0) (35) 

where f(~0) is the power spectral density of the GW flux and X(~) is an antenna func- 

tion that can be considered as a cross section. 
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The total signal energy deposited by a short pulse of duration T 
P 

stationary narrow band antenna is then 

into an initially 

E s = F(£0 a) ~ (36) 

Here F(~ a) = f(~a)Tp = energy spectral density of the pulse, measured for example in 

GPU. O is the equivalent cross section, O = JX(~)d~. 

we can write 

E = ~MAU 2 = ~M(Ax 2 + Ay 2) (37) 
s s 

where Ax and ~y are the changes in the input velocity signal corresponding to the chan- 

ges AX and AY in the output voltage parameters. Thus a gravity wave pulse will induce 

a velocity fluctuation at the input of a bar at T = 0 given by AU s = (2Es/M~. 

Now the gravity wave is a strain wave, and the antenna transducer system is lin- 

ear. It follows that the quantity AU induced by the wave is actually indpendent of 
s 

the initial conditions of the bar (apart from infinitesimal higher order effects due 

to the mass energy associated with the antenna excitation). 

So the energy E s would be better labelled Ese to emphasise that it is the equiva- 

lent energy induced by the GW pulse if the antenna was stationary. That is 

AU s = (2Ese/M) ½ (38) 

Now, since the velocity amplitude of the bar is given by U A = /--5--4 x-+Y 2 where x and y 

are the analogous quantities tO X and Y defined in equation (13), it follows that the 

instantaneous energy of the antenna is 

E(t) = ~M(x2+y 2) = ~MU 2 (39) 
a 

Differentiating, it follows that 

= MU AU = MU AU (40) 
s aa as 

where AE is the actual change in antenna energy due to a signal pulse causing velo- 
s 

city change AU s. Then, substituting (38) in (40) 
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AEs (2Ese/M)½ se = SU a = 2/E(t)E (41) 

Thus we see that the actual energy absorbed (or emitted) by an antenna during a gravity 

(E(t)/Ese)½. wave pulse is greater than the equivalent energy Ese by a factor of 2 

VII OPTIMUM NOISE TEMPERATURE OF TRANSDUCER 

The noise temperature of a linear amplifier is limited by the uncertainty principle 

to the value [i0] 

T = ~/k£n2. (42) 
n/min 

This minimum noise value sets the quantum limit for the sensitivity of linear ampli- 

fiers. Similarly, for linear transducers, which always make use of linear amplifiers, 

we would expect a comparable noise limit, in fact the difference between a transducer 

and an amplifier is really rather slight. We call a device an amplifier if for example, 

electrical power at the input produces electrical power at the output. For a device 

which takes acoustic power at the input and produces electrical power at the output 

there is a difference in the detGil8 of the scattering processes that give rise to 

amplification, but the basic quantum mechanics is unchanged so that equation (42) should 

still apply. This conclusion is confirmed by Giffard [9] who finds that Tn/min z ~/k. 

Making use of equation (42) to define the noise energy W, equation (27) for the 

minimum system noise energy is altered to 

21 8MTa [Z211 41z2111z121~ 
n min = T L IZ~21" Ropt + L ~n2 

(43) 

where T L is the loaded relaxation time of the antenna. 

Referring the noise back to the mechanical input parameters we can express this 

last result in terms of the minimum equivalent sensitivity. The optimum sampling time 

is given by 

s,opt 2L 
y = / Sf(~a) ' 

(44) 

sO that, using equation (34) 
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2 min 4kTaTs + _ _  4W 

~IA~2112 L T L L 

Although this is the minimum (velocity) 

equivalent energy sensitivity: 

L I _n_ 42 1 
ne min 

(45) 

2 
sensitivity, we can easily convert it to 

(46) 

ie: Ene= 2kT a TS/T L + 2~a/In2 (47) 

Note that this result depends on the choice of algorithm used. Other algorithms 

could give different results [12],although by applying this to the Ts,op t value I 

think we have reached a value in reasonable agreement with that obtained by higher 

order predictive filter algorithms. 

The first term in equation (47) can go to zero for sufficiently high Q values. 

Then the transducer noise temperature limit TT,op t is given simply by 

2~w 
103 Hz . (48) TT,opt = ~a = 1.4 x 10-7K for 2-~a = 

For the entire system the optimum noise temperature T is given by 
s,opt 

T 2~ 

Ts,op t = 2T _~s + a (49) 
a YL kln2 " 

In terms of equation (49) we can define a figure of merit (FOM) for a GW antenna- 

transducer system. 

Ts'°pt = 2 -- + . (50) 
FOM = Ts %L 

As we will see in the second lecture FOM values are still many orders of magnitude 

below unity, leaving vast scope for improvement. 

VIII LIMITS TO ANTENNA PARAMETERS 

It is clear that there are limits to the antenna Q and the antenna temperature 
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beyond which there is no need to go to obtain maximum possible sensitivity. There is 

a Q-value beyond which fluctuations in E are limited only to transducer noise, and 
ne 

in the case of a quantum limited system, this is the quantum limited Q-value, call it 

QQ, given by 

kT T 
as 

QQ ~ (51) 

Corresponding to this, it is not worth cooling an antenna below a temperature TQ given 

by 

TQ 2nQ 
= kT (52) 

s 

For real antennae, whose transducers today are far from reaching the quantum 

limit, there is no point in raising the Q or the antenna much above the value required 

to reduce the antenna noise below the electronics noise. That is, from equation (45) 
4W 4kTaTs WakTaTs 

we require ~-- > LT------~-- ' implying Q > 2 ~  ' if we assume T s = Ts,op t. 

That is, Qmax = few times IZ211WakTaTs More simply, Qmax = few times 

I z12 l~i (We) S e (We) 

WaTaT s ZI2 
TT where T T = ~Si(w a) Se(W a) is the transducer noise temperature, 

Z21 

For example, inserting the parameters of the niobium antenna here in Perth, (as 

of December 1978), T T = .040K, T a = 4.2K, W a = 3 x 104 and T s = 1 sec, so that Qmax ~ 

3 x 106 , more than one order of magnitude lower than its actual Q. Higher Q-values 

will only be useful if T T can be reduced significantly. 

IX ARE THE CLASSICAL CALCULATIONS VALID? 

Finally, let us ask, is our essentially classical analysis of antenna-transducer 

systems valid, especially in the quantum limits discussed above? In equation (41) 

we had 

AEs = 2~(t)Ese (41) 

for the actual change in energy due to an equivalent signal energy Ese. Similarly 

AE n = 2~(t)Ene (53) 

for the equivalent nolse energy. Setting E(t) = kT a and Ene= 2~Wa/Zn2, we obtain a 
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photon number AEn/h~a, the number of quanta induced in the antenna at temperature T a 

by a signal pulse corresponding to the quantum limit: 

AE n 2/kT a 2h~0a/In2 / 8kTa 

a a a 
(54) 

Taking ~a/2~ = 1 kHz, and T a = IK, AEn/h~ a z 2 x 104 photons. Thus even at the quan- 

tum limit, if the antenna temperature is not well below IK a relatively large number 

of quanta are actually absorbed by the antenna. Under these conditions the classical 

analysis should be valid. 

8 
9 
i0 
ii 
12 
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14 
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PARAMETRIC UPCONVERTER TRANSDUCERS 

D.G. Blair 

The University of Western Australia, Department of Physics 
Nedland8, Western Australia, 6009 

I INTRODUCTION 

The parametric upconverter transducer has been elegantly analysed by Giffard and 

Paik [i]. Also Braginsky [2], Paik [3], Hamilton [4] and other members of the LSU 

group have looked at this type of transducer from various points of view. 

In this lecture I want to stmunarise Giffard and Paik's analysis, examine their 

results and look at applications of their results to transducer design in general 

and to the UWA microwave re-entrant cavity transducer in particular. 

II EQUIVALENT CIRCUIT AND TERMS IN THE IMPEDANCE MATRIX 

Figure 1 shows a schematic diagram for a capacitively modulated parametric up- 

converter transducer. An LCR resonator is excited by a signal ~ . The displacements 
P 

to be measured modulate the capacitance gap of the resonator, altering the resonator's 

impedance so that the output signal of the resonator is modulated proportional to the 

incoming displacements. The pump signal is assumed to be a current source, a situa- 

tion which occurs in practice if the resonator is coupled weakly to the pump signal 

generator. 

i2(t) Fig. i. Schematic diagram of 
a capacitively modu- 

I 1 ~ Ov~t) lated parametric up- I ~ - -  . . . . .  m e c h a n i c a l  converter 

L R C input 

In practice R must be small so that the device has a high electrical Q-factor 

Qe" An equivalent circuit for this device is shown in Figure 2. In keeping with the 

previous analysis, we will calculate the response of the output voltage and current 

variables V 2 and i 2 to input force and velocity variables F 1 and U I. Since force and 

velocity can be replaced by equivalent electrical parameters V 1 and il, these are a 

convenient choice. 
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Fig. 2. Equivalent circuit of 
parametric upconverter 
transducer 

IMPEDAECE MATRIX 

The transduced signal appears as upper and lower sidebands of the pump signal. 

For example, an input signal ~ gives rise to frequency components in the output of 
a 

the transducer at frequencies ~ ± ~ . 
p a 

As shown in Figure 3, some energy is taken from the pump and transferred to the 

sidebands. Rather than handle the entire output signal consisting of ~p, ~+ and ~_ 

(where ~+ = ~ + ~ , and ~ = ~ - ~ ), it is more convenient to consider the device p a - p a 

as having two separate output channels ~+ and ~_, and to a large extent ~p can be 

ignored as it contains no information. 

C = C O 

C - C 4 A s i n w t  

A 
~Op-W 

Fig. 3. When modulated, energy 
is transferred from 
the pump signal to 
sidebands, as shown 
schematically here. 
Top curve: Unmodul- 
ated frequency spect- 
rum. Bottom curve: 
Sidebands are produced 
and the amplitude of 
the pump signal is 
reduced. 

A 
Wp (.Op+(~O 

Photons in the ~+ sideband represent events of the form shown in Figure 4a. 

Quanta in the antenna scatter with pump photons to produce outgoing upconverte ~ phot- 

ons at ~+. The lower sideband is generated by events as shown in Figure 4b where in- 

coming pump photons down-convert, causing quanta ~ to be injected into the antenna 
a 

[5]. The scattering of photons into the lower sideband can lead to instabilities 

since energy is pumped into the antenna: it will be unstable if the rate of energy 

input is greater than the rate of energy loss by internal damping. This effect has 

been examined by Braginsky [2]. 
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W a 

- ~  upper sldebend 

~ Wa 

sldeband 

Fig. 4. Scattering representation of 
transducer operation. 

By suitable filtering one can choose which sideband one looks at; clearly the 

transducer parameters depend on the choice of sideband. Thus the impedance matrix 

for a parametric upconverter contains extra terms as shown below: 

V 

F 1 

V+ 

i-- z-I 0 

i- ZII ZI+ 

Z+l z++ 

I 

U I 

I+ 

(i) 

where the usual subscript 2 indicating device output has been replaced by + or - . 

The zero terms in the matrix occur because the sidebands are independent, in that V+ 

does not depend on I for example. 

For a real accelerometer we must calculate the values of the matrix components. 

Z±± is the output impedance, ZII is the (mechanical) input impedance. ZI± is the 

reverse transductance, and Z±I is the forward transductance. 

Then 

We will assume that C is modulated by a input velocity U(t) at frequency ~ . a 

l 
~C sin ~a t | C'U 1 | 

C(t) = C o + ~x Ul ~a C o[ 1 + Co~a sin ~a t J (2) 

where U(t) = UlRe{eJ(°at} 

~C Co 
C' 

3x x 
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NOW the current through the capacitor is given by 

~V2 ~C 
i c(t) : c ~ + v 2 

~v2 ~c 
:c~T + v2 T~x u(t). (3) 

The currents through L and R are simply given by 

iL(t) = L-i/dt V2[tl and iR[tl = V2[tl/R (4) 

We look for a solution with V2(t) of the expected general form: 

V2(t) = Vp cos ~pt + v+(t} + v_(t) 

= V {cos ~ t + a+sin ~+t + a sin ~ t 
P P - _ 

÷ b+cos ~+t + h_cos w_t} (15) 

wherea± and b± are the amplitudes of the sideband components. As %[e have specified 

the phase of carrier component of the output voltage (bos ~ t) we must allow the pump 
P 

current i (t) to have generalised form 
P 

ip(t~ = Za sin~t + z bcos ~t. <6) 

For a gravitational radiation antenna (GRA) transducer the modulation of C is very 

small, so the power in the sidebands is also small, and we need only work to first 

order in a± and b±. 

FORWARD TRANSDUCTANCE Z±I 

Equation (1) gives 

V± = Z±±I + Z±lU I. 

To solve for Z±l we assume I± = O. Then 

i (t) ='i (t) + iL(t) + iR(t)- 
p c 

First we solve equation (3) in ic (t) by substituting for V2(t) 

= -U1/X~a: 

(7) 

(8~ 

(equat ion (5)]  w i t h  
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~V 2 
ic(t) = C ~ + V2C'U(t) 

= Co(l + ~ sin~at) Vp [-~psin~pt + ~+ a+ cos~+t 

-~+b+sir~0+t + ~ a_cosw_t - m_b_sinw_t] 
J 

+VpC'UlCOS~at [cOS~pt + a+sinw+t + b+cos~+t 

+a sinC0_t + b_cosw_t]. 

(9) 

Multiply this out, simplify with sum-product identities, and ignore higher order terms 

in a +, b± and ~. Then ic(t) can be reduced to 

ic(t) = CoVp [I~-~+ + ~+a+~ cos~+t + I~ + ~_al cos~_ t 

(10) 

- ~+b+sin~+t - m_b_sin~_t - mpSitn~ . 

Use this result in (8) with the generalised pump current (6) and i L and i R derived 

from equation (4) in a similar way: 

Iasin %t + IbCOS %t = C O + ~+a cos ~+t + [- --~ + w a_ cos ~ t 

- ~+b+sin ~+t - ~sin ~t - w_b sin ~_t I 

~P - ~ cos~+ ~+t + ~+ sin ~+t - ~-- cos ~_t + ~-- sin ~_t 

COS Wpt + a+sin ~+t + b+ cos ~+t + a_ sin ~_t + b cos ~_t (ii) 

From this equation one can extract three equations, one for each frequency ~p, 

~+ and ~_. From the equation in mp it follows that 

V 
-~ and I V = = - ~ C . (12) R ' a p 

b~ : 

2 1 
From the equations in ~+ and ~_, using ~0 = ~, follow four equations in a± and 
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a+ 1 - ~ - - + 2 
- ~0o2 R 2 ~0 ° 

[ ~£-2 1 a + ~ + L -  ~o b+ 1 ---~ + R = 0 • 

(13a) 

(13b) 

Much of the algebra is greatly simplified if we define fractional frequency offsets 

as given below: 

In terms of the ~'s some frequently occuring expressions simplify considerably: 

I 1 1 2A+  +Co 

1 - _c_- = -2A+ ~o 
~o 2 

(15a) 

(15b) 

The solution for a± and b+ is then 

a+ = + -~ (16a) 
- 4A+2Q241 

A+Q 2 

- (16b) = .F - . - - ~  

b+ 2~o 4A+2Q 2 + 1 

where Q = R/~oL. 

These are the amplitudes of the in-phase and quadrature sideband signals. Since a+ 

and b+ are linear in ~ which contains the input velocity amplitude these equations 

express the proportionality between the input velocity and the sideband output. To 

obtain the transductance, we write 

v± (t) = Vp {a~_sin~+t + b+cos£0+t} = Re {V+eJ~°±t}. (17) 

Since Re(X + iY)e j~t = X cos~t - Y sin~t it follows that 

V± = % (b± - ja±) so that Z±I = V±/U 1 
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where Z+l 2X~o + 4Q2A+ 2 (18) 

Unless we use single sideband detection the total signal voltage is given by 

VosB = I Iz+ll + Iz_lll oi (19) 

Let us look at the typical forms for I Z+I 1 + I Z_I 1 . We see immediately that the 

transductance depends on Q and Vp, and goes inversely with x as one would expect. The 

last part of equation (18) contains the dependence of forward transductance on the 

relative offset between the pump and the sidebands. If Q < ~p/~a this term is negli- 

gible and I Z I + I Z I has a weak dependence on pump offset relative to th~ carrier. 
+i -i 2 2 

However if Q > ~p/~a' 4Q A+ is large and I Z+I 1 + I Z II shows a large spike for ~ = 
_ - p 

£°o + ~a as shown in Figure 5. 

e= 

eo 

i i ~ 
"r 

N 
÷ 

N 
k J 

o== 
(= 

=. 

Q =  IO 7 

I I 

i 0 

...__.____..........-""" 

.SO 2 ' . 0 0  2 ' . $ 0  S'.O0 3 ' . 5 0  4 . 0 0  
Io~ FREg.  OFF6ET 

Fig. 5. Typical dependence of forward transductance on offset of the pump frequency 
relative to the cavity resonant frequency ~ -~ . This computer plot is cal- 
culated for the UWA transducer for an elect~ic~l Q = 107 , Vp = i00 Volts and 
x = 3 x 10 -3 cm. 
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Typically the transductance may increase by two orders of magnitude at high Q. 

To attain this condition, however, the pump frequency is off-resonance, and there may 

be difficulty in achieving a significant pump voltage V across the resonator. How- 
P 

ever, as we will see, the input impedance also peaks at this value, implying the best 

possible coupling between the transducer and antenna can be achieved under these con- 

ditions. 

IHPUTIMPEDAHCE Zli 
Optim~n energy transfer from the GRA to the transducer will occur when the mecha- 

nical input impedance of the transducer matches the antenna output impedance. The mis- 

match between the antenna and the transducer impedances then determines the energy 

transfer ratio. That is, the energy coupling factor is given by Zll/Zou t where Zou t 

is the antenna output impedance. The appropriate value for Zou t is the non-resonant 

impedance of the antenna, Zou t = ~0aM for effective mass M. The reason that the non- 

resonant impedance is used is that the signal detection requires the signal to be out- 

side the noise bandwidth of the antenna - that is the signal appears off-resonance, 

where the antenna impedance is ~a M rather than Q~a M. 

To calculate Zll we must look at the force across the capacitor: 

proportionality constant relating this force to the resultant velocity. 

voltage V, 

Zll is the 

At constant 

F(x) = ~ (½CV 2) 

-~ c,x)v221v2 = ~x ½(Co + = const (20) 

= -½C,V22(t) 

where V 2 is given by equation (5). Evaluating and simplifying this expression we find 

force components at ~ = 0, ~ = ~a and ~ ~ 2~p, To first order in a±, b±: 

2 FDC = -½C'Vp (21) 

since the power in the sidebands contribute negligible force. 

F(t0 a) = -½C'•p 2[ (a+ - a_) sint0at + (b+ + b_) coS~0at ] (22) 

2 
F(2~ a) = -½C'V [(a+a + b+b )cos2~Oat + (a+b+ + a b )sin2~Oat ] (23) p . . . .  
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Clearly F(2~ a) is negligible. There will also be forces at extremely high frequencies 

near 2cop, which we can safely ignore. 

Expressing F(ma) = Re{FleJcoat} to obtain a complex input force amplitude, we find 

Fl= -~C'Vp2{(b++ b_) - j(a+-a_) } (24) 

using equation (16) for a± and b± 

-%CoVp 2 ~_~+Q(I-2jA+Q) 

Zll macoo x2 L I+4Q2~+ 2 

co_Q(l-2j~_Q)~ 

I+4Q2A 2 "~ 
(25) 

For 2QA+ > i, Zll shows a strong peak when the pump offset 6cop 

impedance approaches zero when co ~ ~ . More precisely 
p o 

Zll = 0 when ~ = /8Q 2 P LOp if A±Q << 1 

= ½ ~a2/~p if d±Q >> 1 

= CO -~ is co . The 
po a 

(26) 

Typically ZII + 0 for 6cop ~ I0 -I or 10 -2 Hz. 

Figure 6 shows data for IZlll for the present UWA transducer, (for Q-values up 

to 5 x 105 ) and extrapolated to higher Q's. 

Q: 5,,or.. 
S~IoL 
5XlO 

oi 

log Z .  

~ 5~10 3 

-8 ~ / 

_ ~ .  / ~ 

121L 
. I  I I 0  I 0 ~ 

pump offset freq. rad.s -I 

Fig. 6. Typical input impedance of UWA transducer for the Q-values shown, plotted agai 
nst pump offset frequency co -co . C = 1 pF, V = i00 V and x = 3 x 10 -3 cm 

p o o p 
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It appears to be possible to achieve Zll values as high as i0 I0 Kg sec -I in prin- 

ciple, by optimising Vp, Co, Q and x. Such values however, still introduce a signifi- 

cant impedance mismatch between the transducer and antenna. 

OUTPUT IMPEDANCE Z±t 

To calculate the output impedance we first define the output current as follows: 

i2(t ) = ReIt ei~tt (27) 

for each sideband We assume FI=0 so as to eli~inate 

transfer equation (see equation (i)). Then 

dV 2 
i (t) = C(t)- 
c dt 

the transductance term from the 

(28) 

+ i 2 = i + i L + i R (29) and ip c " 

Substituting (27), (28), (6) and (4) into (29) we obtain an expression which can be 

separated into equations for frequencies ~_,%,~+ similar to equation (ii). Since 

we have assumed zero modulation we can fix the phase of i 2 by setting Im I t = 0, so 

that I± is real. Then we obtain a new set of equations for at, b± 

It/V p = a t ~o L + ~- , 0 = t ~o L " (30a,b) 

These zero modulation values for a+, b+ are: 

2dtQRI + I+R 
a+ , b+ . (31a,b) 
- Vp(l+4dt2Q 2) - Vp(l+4dt2Q 2) 

Since v t = a±sin~tt + btcos~t, 

v+ 112j +0 I 
(32) 

Although Ztt is intrinsically high, the probes which couple the input and output power 

to the resonator act as transformers, reducing the output impedance in particular to 

the transmission line impedance. 

REVERSE TRANSDUCTANCE Z1t 
The reverse transductance, we have seen, is responsible for back reaction noise 

in the antenna. Referring to the impedance matrix transfer equation (I) we must set 

U l = 0 (zero modulation) to evaluate this quantity and since the sidebands are indep- 

endent we consider current i2(t) in one sideband only 

i 2 (t) = X+ cos ~+t. (33) 
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From (20) , F I, = {-%C'V22 (t) } (~34) 
£0= L0 a 

where V2(t) = VpCOS~pt + v+e i~+t + v_e i~-t. (35) 

Multiplying out (34) using (]5), choosing only the a 
v and v it follows that + 

component, and using (32) for 

-~C'VpQ ~(I-2jQA+) (I+2jQA_) -- 

F1 ~oCo tI+4Q2A+--------- ~ I+ + I+4Q2A+ 2 Ii " (36) 

Then defining ZI+ by Zl+I + ± ZI_I - we obtain 

 VpQ [I÷2jQA± 1 
ZI± = ~o x [I+4Q2A+------2 • 

(37) 

MEASURING V IN MICROWAVE TRANSDUCERS 
P 

Almost all the quantities used in the impedances calculated above are known or 

measurable. One exception is Vp, which at microwave frequencies is not immediately 

known. V is easily determined however, from the reflection coefficient F of the p o 
transducer at resonance, the transducer cavity loaded Q-factor QL and the value of 

C . o 

We have IVp [2 = 2QO~OCo [~] Pr (38) 

~OoC ° l ( 39 ) 

where _Qo is the unloaded cavity Q, and Pr' P'I are the reflected and incident powers 

r e s p e c t i v e l y .  Then t h e  c a v i t y  c o u p l i n g  c o e f f i c i e n t  8 i s  g i v e n  by 

l+Fo Qo 

l-Fo Qe 

where Qe = I/[QL-I - Qo -I] defines the external Q. 

Then 

(4O) 

[VpI2 2QL (i+8) Pr 
~OoCo~ (41) 
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r,- l 
~oCo t~"~J Pi (42) 

In the limit of overcoupling where the cavity Q is determined by the external circuit 

V is simply given by 
P 

IVp 12 = ~ C 2QL Pr (43) 

oo 

Ill COMMENTS ON GENERAL TRANSDUCER PROPERTIES 

We have already seen that there are two regimes of interest for parametric up- 

converters: 

(a) AQ << 1 and (b) AQ >> i. 

In practice for all parametric transducers constructed to date, the Q-value is 

so low that the cavity bandwidth is large compared with the sideband offset. This 

is described by AQ << i, and on resonance all impedances are predominantly real. 

Then 

½VpQ 

Zl+ = Zl- ~ ~ x 
o 

Z_l = -Z+l z -~ Zl+ 
a 

CoVp2Q 

Zll = ½ 2 
x~ 

o 

Reverse transfer (44) 

Forward transfer (45) 

Input impedance (46) 

= Q output impedance (47) Z±± ~ C 
o o 

reduces thus reducing the back reac- Note that a higher resonator frequency ~o ZI±' 

tion of the transducer on the antenna. Forward transductance Z+I is greater than the 

reverse transductance by the ratio ~p/~a" Input impedance, which in practice is always 

too low, is increased by having a large capacitance Co, large Vp and small x. 

At high AQ values, obtained by offsetting the pump and using a high Q much more 

complex behaviour is observed. All the implications of large pump offsets and high 

Q's are not clear to me yet. Although there are opportunities to raise Zll, the re ~ 

verse transductance is simultaneously increased. 
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At present we have not reached sufficiently high Q-values to be able to experi - 

ment with these properties in real cavities. This could be achieved by making use of 

larger gap spacings, thus sacrificing x in exchange for larger Q-values. There are 

indications that this high Q regime will have to be attained to bring transducers into 

the quantum non-demolition regime of operation. 

IV DESIGN OF A PRACTICAL TRANSDUCER 

Let uS first look at some data on figures of merit for various amplifiers available 

today, so as to explore possible design areas. It is clear from Figure 7 that highest 

FOM values (defined as des- 

QUANTUM LIMIT cribed in the previous lee- 0 

-2 
log 

FOM 

-4 

/ 4K theory 
/MASER~ 

Paramps ~ 4 K  / 

/ DC SQUID ~"~7 K~.- .- 

/ / TWT 
/ / f  , X- Band SQUID / , /~TDA 

//__ // /Tra~ nsistor / /  .FsQu,o / / /  
/ FET..K/! 

/FET 300K 

'74 RF SQUID 

-8 0 2 ' 4  ( ~ '  8 ' 

log frequency 
10 ¸ 

ture) are attained in the 

microwave region although 

SQUID's show rapidly improv- 

ing performance especially 

in the audio frequency regime. 

In view of this data we have 

chosen i0 GHz for our trans- 

ducer pump frequency. Here 

we have the fortunate combi- 

nation of (a) high frequency 

ratio ~p/W a which we have 

seen optimises forward trans- 

ductance while minimising 

reverse transductance, and 

(b) FOM values attainable with 

paramps or masers greater 

than i0 -I. Moreover a source 

of noise which we have ignored 

in this analysis, phase noise 

in the pump signal, can also 

Fig. 7. Compilation of noise data on various ampli- 
fiers [6],[7],[8],[9],[i0] expressed in terms 
of figure of merit (FOM), defined as the 
ratio of quantum limiting noise/actual noise be well minimised at this fre- 

quency by means of supercon- 

ducting cavity stabilised oscillators. The LCR resonator for the transducer is con- 

veniently realised as a small re-entrant cavity, machined out of niobium and using the 

end of the antenna as its end face. Very successful operation of this transducer has 

been achieved although it is still far from the quantum limit. As of December 1978 

the noise temperature of the transducer is 0.040 K. 

The transducer has been described elsewhere [ii]. Here we will briefly look at 

the present system, mainly to illustrate its limitations and go on to discuss the sys- 



327 

tem being developed which is designed to come within an order of magnitude of the quan- 

tum limit. 

Figure 8 is a schematic diagram of the present system. The antenna and trans- 

ducer are both magnetically levitated. A servo system which involves velocity moni- 

toring with an RF SQUID as well as sensing with the microwave cavity enables the trans- 

ducer to be locked onto the resonance of the re-entrant cavity. The pump signal is 

obtained from a conventional klystron oscillator, and the output signal is "amplified" 

by a mixer mounted on the transducer. The mixer is extremely convenient to use as it 

is passive and small; the output voltage is proportional to the displacements at the 

transducer input. Unfortunately the mixer noise temperature is in excess of i000 K. 

At present this is not actually a limitation, since given no other sources of noise, 

the tranducer noise temperature would be T T ~ (~a/Wp)Tm where T m is the mixer noise 

temperature. For our 5.6 KHz antenna we would expect T T ~ 6 x 10 -4 K. The origin of 

the 40 mK noise temperature is in two roughly equal contributions: (a) amplitude and 

phase noise in the pump signal and (b) noise contributed by the IF amplifier on the 

output of the mixer. More details of this system can be found in reference [ii]. 

current 
amplifier 

ou°tput 

to current 
o amp. 

.! stabilisation r ~ i ~ ' e . n t  rant 
drive'~ Icavity avlty niobium coil 

.sense & nna 
~> repulsion coil 

damping plate~ 
push 
coil 

/ 

Fig. 8. Levitated 6 kg Nb antenna system: simplified block diagram. Servo control of 
the levitated transducer is achieved by means of the feedback network shown. 
RF sensors are used with X-Y displays to give a magnified visual indication 
of the levitation. 
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Both the above noise sources and others are significantly reduced by using our 

design for approaching the quantum limit which is illustrated in Figure 9. It consists, 

in the first place, of a superconducting cavity mounted directly on the transducer to 

stabilise the pump signal. We already have an operating system which uses a feedback 

loop to lock the excitation signal to the cavity, but it has not yet been used in con- 

junction with the transducer. Such a cavity, used in the transmission mode, with a 

Q > 108 will reduce this noise source to a negligible level. Secondly, the output sig- 

nal from the cavity must be amplified by a near quantum limited amplfier before it is 

demodulated by a m~xer. A parametric amplifier has been designed for this purpose, 

and a carrier suppression system has been tested to reduce the carrier level suffic- 

iently to prevent saturation of the amplifier. These systems are still in their design 

stage, and are shown mainly to illustrate the sort of designs one may choose to app- 

roach the quantum limit. 

m i x e r  

phase  
shi f ter  ~~ ~ circulator 

carrier 

stab l l isa t lon  
cav i ty  

netw:r Ck 
Fig. 9. Replacing the noisy mixer with a parametric amplifier near to the quantum 

limit enables a vast improvement in the system noise performance. This 
block diagram shows a proposed system for which the calculated sensitivity 
is 10-5 GPU when used with the UWA 67 Kg Nb antenna. The degenerate para- 
metric amplifier is pumped by a signal obtained by frequency doubling the 
pump signal. A carrier suppression interferometer is used to prevent over- 
load of the paramp. 

V CONCLUSION AND FUTURE PROSPECTS 

We have seen that it is realistic to expect transducers to approach the quantum 
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limit in the near future. However the final factors of two may be much more diffi- 

cult to achieve than the orders of magnitude which presently lie ahead. One reason 

for this is that a so far unmentioned noise source comes into play as one approaches 

FOM = i. This is shot noise. In principle one can operate at higher pump power levels 

to avoid this statistical noise, but in practice technological problems appear such 

as breakdown in superconducting cavities and heating effects in cryogenic systems. 

Another major problem which we have only touched on here is impedance matching between 

the high impedance antenna and the generally low impedance transducers. Great ingen- 

uity will be required to design suitable mechanical matching networks which do not 

reduce the Q of the antenna. It is probably essential to reach the quantum limit if 

we are to make useful observation of gravitational radiation, so these are problems 

that we will undoubtedly have to solve. 

The amount of work ahead is probably best illustrated by concluding with a sum- 

mary of approximate GW antenna-transducer FOM values attained to date: 

Weber 1970 8 x i0 -I0 

1973 4 x 10 -9 

Munich-Frascati 1.2 x 10 -8 

Rochester-BTL ~ 10 -7 

Rome 10 -7 

Stanford 3 x 10 -7 

Perth 1.2 x 10 -5 

Five orders of magnitude improvement must be attained before we reach the quantum 

limit. 
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DETECTION OF GRAVITATIONAL RADIATION FROM PULSARS 

Hiromasa Hirakawa 

Department of Physics, The University of Tokyo 
Bunkyo, Tokyo llSj Japan 

I INTRODUCTION 

There are two types of astrophysical source which are supposed to emit gravita- 

tional radiation (GR). The first type is a pulsed source, like a gravitational collapse 

of stars and a collision of stars, in "which a violent motion of masses takes place in 

a single shot. The events presumably occur within about 1 msec of time. Therefore 

the spectrum of the radiation would be found at around 1 kHz. The second type of 

source gives rise to a continuous GR as emitted from vibrating or rotating stars. A 

significant part of the stellar energy could be radiated during the time span of the 

stellar motion. This type of radiation is characterized by its monochromatic spectrum 

located below 100 Hz. The Crab pulsar rotating 30 times a second, for example, could 

emit GR at twice the rotation frequency, namely at 60 Hz. 

Figure 1 shows three types of antennae now being used to detect GR. 

(o) 

(b) 

(c) 

Fig. i. Antennas for gravitational 
radiation (a) cylinder, 
(b) square plate, and 
(c) disk 

The cylin- 

drical antenna (a) oscillates in its fundamental 

mode of vibration with the frequency ~ equal to 

the sound velocity v divided by twice the cylin- 
s 

drical length £, 9 = Vs/2Z." The velocity of 

sound in aluminum is v ~ 5000 m/sec. Thus for 
s 

an aluminum cylinder 2 meters long, the resonant 

frequency is ~ ~ 1300 Hz which is right in the 

frequency range predicted for the burst events. 

For monochromatic GR of, say 60 Hz, however, 

such an antenna would need to be ~ 40 meters 

long, which seems impracticle. One is therefore 

forced to consider an antenna of different design, 

such as that shown in (b). Antennae of this 

type, which are particularly suitable for low 

frequency experiments, could be tuned to any 

given frequency down to i0 Hz. Thus the experi- 

ments on GR are divided into two categories, 

the one dealing with burst events at kilohertz 

region and the second one dealing with events 

of extended duration in the frequency range 

below i00 Hz. The present paper describes the 
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experiments of the second category and the experiments searching for GR from pulsars 

in particular. 

II GR FROM PULSARS 

Pulsars are considered to be rotating collapsed objects, probably neutron stars. 

An axially symmetric body does not radiate GR if it is rotating around its symmetry 

axis. There are several reasons to suspect that the pulsars are not axially symmetric 

rotors. The first reason, of course, is the very fact that the pulsars are emitting 

a pulsed electromagnetic radiation instead of a steady radiation. The moments of 

inertia of a rotating body along three principal axes tend to have unequal size. The 

moment along the rotation axis usually has the largest value due to the centrifugal 

deformation of the structure. The strong dipolar magnetic field of neutron stars may 

cause further deformation. Now the rotation axis of a body does not have to coincide 

with its symmetry axis. When the rotation axis and the symmetry axis cross each other 

at a finite angle, there will be emission of GR at the precession frequency. A neutron 

star may have three unequal moments of inertia because of a possible irregularity of 

the structure and the magnetic field. I might even add that a fast rotating star 

made of a perfect fluid would assume an asymmetric configuration, namely an ellipsoid 

of Jacobi or a pear-like shape of Liapounoff and Poincar~ (Fig. 2), in a certain range 

These asymmetric rotors inevitably emit GR whenever they of the rotation frequency. 

rotate. 

There are several pulsars with their rotation 

frequency precisely known to us. The phase of the 

rotation is usually given by a polynomial 

~(t) = ~(0) + Vt + ~tt2/2 + ~ttt3/6 , (i) 

where ~ is the rotation frequency, and ~ with a 
t 

negative sign indicates the deceleration of the 

rotation. The main cause of the deceleration is 

supposed to be the loss of the rotational energy 

to the surrounding nebula through the action of 

the magnetic dipole, whereas a part of the energy 

loss might be attributed to the emission of GR. 

The amount of GR from pulsars has been estimated 

by several authors. Table 1 shows two most promi- 

sang pulsars as emitters of GR, the Crab pulsar 

and the Vela pulsar [i]. 

Fig. 2. Equilibrium figures of a rotating perfect fluid 
mass include an ellipsoid of Jacobi and a pear- 
like shape studied by Liapounoff and Poincare 
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TABLE l: ESTIMATED GR FROM PULSARS (ZIMMERMANN, 1978, REF [i]) 

CRAB #i CRAB #2 VELA 

FREQUENCY V (Hz) 60.2 60.2 22.4 

DISTANCE R (pc) 2000 2000 500 

LUMINOSiTY (watt) 5 x 1025 4 x 1027 1 x 1027 

mc~2 1 x l028 1 x 1030 2 x 1030 

m~n 3 x 1022 8 x l024 9 x 1023 

FLUX S (watt/m 2) 1 x 10 -15 9 x 10 -14 4 x 10 -13 

mGZC 4 X 10 -13 4 X 10 -11 1 X 10 -9 

m~n 4 x l0 -19 1 x 10 -16 2 x 10 -16 

AMPLITUDE h 1 x 10 -27 9 x 10 -27 5 x 10 -26 

mGzc 2 x 10 -26 2 x 10 -25 3 x 10 -24 

rain 2 x 10 -29 3 x 10 -28 1 x 10 -27 

#i: STANDARD MODEL, #2: SEE REF [2] 

III RESPONSE OF ANTENNAE TO GR 

A resonant antenna for GR is characterized by its resonant frequency 9, quality 

factor Q, mass M, length i, and temperature T. The antenna will be forced to vibrate 

when driven by a monochromatic gravitational wave. After the force has been applied 

for a time much longer than the decay time Q/2~v of the antenna, the antenna will find 

itself in equilibrium with the GR field. Disregarding a numerical factor, the signal 

energy contained in the equilibrium state is 

signal energy h2MQ212~ 2 , (2) 

where h is the amplitude of the oscillating component of the space metric. 

2~ kT$ 

J 
Brownian motion 

0 

Fig. 3. Power spectrum of Brownian motion of a 
resonant antenna 

We consider next the noise 

level of the detector. The signif- 

icant part of the noise in the 

antenna is its thermal vibration, 

the so-called Brownian motion having 

an average energy kT. In the fre- 

quency spectrum, this energy is 

distributed over the bandwidth of 

the antenna ~/Q (Fig. 3). Therefore, 

the spectral density of the noise 

at the center of the resonance 

~ kTQ/~. Usually, the output 

voltage of the antenna is sampled 
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every At seconds over a total observation time NAt resulting in an effective bandwidth 

1/NAt. Therefore we have 

noise energy ~ kTQ/~NAt , (3) 

which gives the signal to noise ratio contained in the antenna [3] 

signal energy/noise energy ~ h2MQ£293NAt/kT (4) 

For an antenna with an extremely high Q value, say I0 z0, the decay time Q/2~v is quite 

long, 3 x l07 sec, namely one year at v = 60 Hz. It is not practical to wait for the 

equilibrium state and one has to detect the build-up of the signal energy during the 

observation time. However, in spite of the difference in the format, the signal to 

noise ratio in this case is also given by the same equation (4). 

IV RESULT OF EXPERIMENT 

The experimental search for GR from a pulsar using a resonant antenna was first 

attempted by the group at the University of Tokyo [3]. A 400 kg antenna resonating 

at 60 Hz was used and its output was recorded over 420 hours. The coherent signal 

from the Crab pulsar was searched in the record by a Fourier integration analysis. 

The result is shown in Fig. 4 as an accumulation of the signal components which are 

Z s ( I )  

,,, Zcci  

XlO:Za 

2 

3 

Fig. 4. Accumulation of th e observed i 
signal component in phase 
with the Crabs optical 
pulses [3]. The ordinate 
and abscissa are 

S(I) = Zv(ti)sin 47 ~(ti) 

and 

C(I) = Zv(ti)cos 4~ ~(t i) 

re spe c tive ly. 
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in phase with the Crab optical pulses ~ observed by Lohsen at Hamburg [4]. Values of 

the relevant parameters of this experiment are shown in Table 2. The upper limit 

for the amplitude of GR from the Crab pulsar thus determined is 

h < 1.6 x 10 -19 (5) 

which gives an upper limit for the flux S < 14 watt/m 2. The experiment is now being 

repeated in Tokyo with a larger antenna i00 times more sensitive than the above experi- 

ment. 

TABLE 2 : VARIOUS PARAMETERS OF THE CRAB PULSAR EXPERIMENT 
(HIRAKAWA, TSUBONO AND FUJIMOTO 1978, REF [3]) 

ANTENNA FREQUENCY ~ = 60.2 Hz 

QUALITY FACTOR Q = 4500 

MASS M = 400 kg 

LENGTH £ = i.i m 

TEMPERATURE T = 300 K 

BROWNIAN MOTION 1.6 x 10 -13 m/Hz ½ 

SAMPLING INTERVAL At = 1 sec 

OBSERVATION TIME NAt = 420 hours 

INTERPRETATION OF RESULT S < 14 watt/m 2 

h < 1.6 x 10 -19 

I would like to mention the background of the ELF electromagnetic field at the 

Crab pulsar frequency which might interfere with this experiment. There is,after all, 

~ 30 kW of total electromagnetic energy arriving on earth from the Crab nebula part 

of which is modulated at 30 Hz. A demodulation mechanism, if any, in the upper at- 

mosphere would regenerate a coherent electromagnetic wave at 30 Hz. An upper limit 

for this component of magnetic field was determined by a resonant coil antenna, [5], 

B 
c 

B 
c 

cos ~ = (-2.0-+ 2.9) x i0 -z° gauss 

sin (~ = (0.1+2.9) x 10 -1° gauss. 
(6) 

V FUTURE EXPERIMENT 

The amplitude h obtained so far is at least 106 times larger than the expected 

value. How can we overcome this factor in a future experiment to detect GR from the 

Crab pulsar? Table 3 shows a set of parameter values for an experiment designed to 

reach the target. In the following we discuss some of the problems in performing this 

experiment. 
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TABLE 3: PARAMETERS OF THE PROPOSED CRAB PULSAR EXPERIMENT 

ANTENNA FREQUENCY ~ = 60.2 Hz 

QUALITY FACTOR Q = 2 x 108 

MASS M = 1400 kg 

LENGTH £ = 1.65 m 

TEMPERATURE T = 3 x i0 -3 K 

BROWNIAN MOTION 5.5 x i0 -I~ m/Hz ½ 

SAMPLING INTERVAL At = 1 sec 

OBSERVATION TIME NAt = 6 months 

SENSITIVITY S ~ 3.3 x 10-llwatt/m 2 

h ~ 2.4 x 10 -25 

HIGH Q ANTENNAE 

There are two problems associated with high Q antennae: that of obtaining a 

material of low internal loss: and that of handling a resonant antenna of very long 

decay time. The Q of aluminium disks made of a particular species of alloy, 5056, has 

been found to exceed those of other alloys by a factor of more than i0 at low tem- 

peratures [6]. It has been suggested that this is a result of the high density (5.1%) 

of magnesium atoms in the alloy. We believe that sufficiently large aluminium discs 

are available, and that these would have Qts in excess of 108 at l0 kHz at temperatures 

below i0 K. We do not yet know, however, whether such high Q can be obtained in a 

low frequency antenna having radial cuts for the frequency tuning. 

The width of the antenna resonance is 6 x 

Q ~ 108 at 60 Hz. This means that the antenna 

60. t 9 _ H z ~  0532 

I . . . . . . . . . . .  I 
J F M A M J J A S 0 N D 

Fig. 5. Expected frequency of GR from the 

Crab pulsar. 

10 -7 Hz for the proposed antenna of 

must be tuned to the incomlng signal 

with a precision better than 6 x 10 -8 Hz. 

The problem in this connection is that 

the frequency of GR from pulsars shows 

the deceleration mentioned before to- 

gether with the seasonal frequency 

modulation due to the Doppler effect of 

the orbital motion of the Earth. Figure 

5 shows the expected frequency of GR 

from the Crab pulsar received in 1979. 

The maximum frequency shift during the 

year is 0.026 HZ. Although one might 

be able to cope with these predictable 

frequency shifts by an external tuning 
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of the antenna explained later, there are also unpredictable frequency jumps and random 

modulations amounting to 10 -8 Hz, which are hard to manage. 

There is another problem of the daily modulation of intensity and polarization 

plane due to the rotation of the Earth. Figure 6 shows the expected intensity and 

N 

X ° 

N 

-12 0 12 

phase modulation of two polarization components 

of GR received by antennas mounted horizontally 

in Tokyo. With the applied force having this 

kind of modulation, the response of the antenna 

is a bit complicated. In fact, with the modula- 

tion pattern of wrong polarization, the amplitude 

of the antenna oscillation would never grow up 

and never attain an equilibrium with the gravi- 

tational field. A solution to this problem 

would be to go into space, where we could have 

an antenna which has a fixed attitude toward the 

Crab pulsar. 

Fig. 6. Daily modulation of the 

Crab GR received by 
antennas in Tokyo (35 ° 43' 
N). p: GR component in 
the meridian plane, s: GR 
component in a plane ~/4 

to the meridian motion represents the thermal energy kT of the 

antenna mode. When one cools the antenna, the 

thermal energy of the mode is decreased and the height of the spectrum is reduced. 

On the other hand when one increases Q of the antenna, the sPectrum becomes narrow 

and the peak of the spectrum goes up. In the proposed experiment, the power spectrum 

density of the Brownian motion, 2kTQ/ZV at the center of the resonance, corresponds to 

4 x 10 -14 m/Hz ½ in the antenna displacement. This sets an upper limit for the trans- 

ducer noise level, which is not, in practice, very stringent. However there is a 

great deal of merit in having transducers of better characteristics as explained 

below. 

TRANSDUCER NOISE 

There are two sources of noise in GR detec- 

tors, the thermal noise of the antenna which I 

mentioned earlier and the noise generated in the 

transducer. The transducer noise has a wide 

spectrum as compared to the narrow spectrum of 

the Brownian motion. Figure 7 shows spectra of 

these sources together with the expected spectrum 

of GR. The area of the spectrum of the Brownian 
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Fig. 7. TWO types of noises in 

GR detectors together 
with GR signal, shown 
in power spectra 

The frequency of a resonant antenna could be tuned by an external load coupled to 

the antenna. The range of tuning obtained with this passive method is limited by the 

size of the coupling. To reach beyond this limit one can use an active method [7] in 

which the amplitude of the oscillation of the antenna is sensed by a transducer, am- 

plified, and fed back to the antenna as a driving force with a proper phase (Fig. 8a). 

The tuning range Of frequency of this 

~ ~ method is theoretically unlimited. The 

method increases the antenna noise tem- 

(0) 

N 

Fig. 8. Modification of antenna 
characteristics by external 
circuits. (a) electronic 
tuning, and (b) electronic 
cooling 

(b) 

perature, however, by introducing the 

transducer noise into the antenna. When 

there is a certain margin of the noise 

level in the transducer, the method works 

fine. With a quiet enough transducer, one 

can also utilize the electronic cooling of 

antennas which improves the antenna per- 

formance signlflcantly [8]. Consider an 

antenna with the quality factor Q at tem- 

perature T (Fig. 8b). When the transducer 

output is amplified G times and fed back 

to the antenna through a resistor R, the 

resultant quality factor Qt and the noise 

temperature T t of the antenna satisfy 

I/Q + 1/Q R = 1/Q' (7) 

T/Q + T/(l+G)QR = T'/Q' , (8) 

where QR is the external quality factor showing the electronic loading. In the case 

where the second term in the left of eq. (7) is negligible, we have 
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T/Q = T'/Q' (9) 

r 
Thus the noise temperature T' and the quality factor Q' are both reduced while the 

ratio T,/Q' remains unchanged. In this way one can increase the width of the antenna 

resonance from ~/Q to 9/Q', yet obtain the same signal to noise ratio which is propor- 

tional to the factor Q'/T'. In our second experiment now under way, we have an antenna 

Q ~ 65000 at T = 300 K. We use electronic cooling such that Q' ~ 4500 with T' ~ 24 K. 

QUANTUM EFFECTS 

Up to this point I have described everything in terms of classical physics without 

ever mentioning the quantum effects. The thermal energy kT of the antenna divided by 

the quantum hV of the vibration energy gives the number of phonons in the antenna, 106 

in our case. On the other hand, the signal energy in the antenna in equilibrium with 

GR from the Crab pulsar is equal to i05 phonons. Therefore, there seems to be no need 

to consider the quantum effect at the present level of sensitivity. If, however, we 

want to increase the sensitivity by another two orders of magnitude, then we have to 

consider quantum effects seriously. 

vI CONCLUSION 

I have described what we are doing now in our effort to detect GR from the Crab 

pulsar. We hope to reach the target in 1980's. In concluding this paper, I will tell 

about a small experiment we are planning to do. We wanted to have a certain source 

of dynamic gravitational field simulating GR from Crab pulsar which can be used to 

calibrate the antenna sensitivity and which will ensure that everything is working 

all right. For this purpose we rotate a 50 kg steel bar, 0.6 m long, at 1800 rpm in 

precise resonance with the antenna. The dynamic gravitational field thus generated 

has been detected by our antenna at 2 m distance with a signal to noise ratio i00 on 

an oscilloscope screen. Although the antenna in this case is not sensing a field of 

GR, this is a convenient way of testing the antenna performance. In addition, using 

this rotating bar we can check the Newtonian law of gravitation over a distance 2 - 

i0 m. It seems that no one has ever demonstrated the inverse square law of gravitation 

directly in the range of distance between 1 m and i0000 km [9], and there are even 

theoretical arguments suggesting a failure of the inverse square law at a certain 

distance [10, ii]. Our test, which is made possible due to the enormous sensitivity 

of the GR detector, will be completed shortly and I hope I can report on this subject 

soon. 
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I INTRODUCTION 

The main problem of gravitational wave experiments is the detection of extremely 

small signals in the presence of relatively large noise of mechanical and electronic 

origin. For this reason it is necessary to analyze the experimental data with algor- 

ithms which make the signal to noise ratio (SNR) as large as possible. An analysis 

of the sensitivity of a gravitational wave antenna system shows that the role of the 

algorithms is comparable in importance to that of the experimental apparatus. 

In what follows we shall not deal with the detection of the continuous background 

of gravitational waves (GW) [1,2] nor of continuous monochromatic radiation, where the 

performances of the algorithm are limited by the observation time or by the decay time 

of the antenna, whichever is smaller [3 ]. Instead we shall consider only short bursts 

of GW, that is, having duration much smaller than the decay time of the antenna and 

the other time constants of the system. In this case we can define the instrumental 

sensitivity as the spectral energy density f(~) of a standard pulse of gravitational 

radiation which produces, in the absence of noise, an output pulse with amplitude 

equal to the standard deviation of the noise alone. For aluminium antennae of the 

Weber type we have, ~ ], 

f(~) = 782 Teff/M (GPU) = 78.2 Teff/M (kJ/m2Hz) . (I) 

M is the mass in kg and Tef f is the effective temperature in Kelvins, which is only 

a fraction of the true temperature T of the bar due to the effect of the filtering 

algorithm. 

From (I) it is clear that the effort expended in developing data analysis algor- 

ithms should be comparable with that in reducing the temperature of the bar or in in- 

creasing its mass. 

Considering (i) one might wonder how it is possible to obtain an effective temp- 

erature srmBller than the true temperature of the bar, i.e. to detect external pulses 

of amplitude much smaller than kT. This question was discussed by Hawking and Gibbons 

[5 ] in a pioneering paper considering an algorithm for GW and further analyzed by 
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M~eder [6]. 

4kTR 

VsTs6(t) 

(a) 

i 

- j  I / ( 1 +  JWT) ~-0 0 .2 

4kTR t 
Vsrs 8(t) ( b )  

J 1 I[ 11 -I w J -I W --~ 1/(1 + j(,~r~ -':0 0 2 

Fig. i. Observation of a delta signal in white noise through a resonant 
circuit and through a low pass filter. 

If we make reference to an electrical resonator, that is an R-L-C circuit, we 

find that the fluctuations are driven by the Johnson noise voltage generator associated 

with R whose bilateral power spectrum is 

VR(~) = 2kTR = 2kT/~oC Q , (2) 

where Q is the quality factor of the circuit. The output variance can be expressed 

in general as 

v 2 = 2kTRIW(~o) I2~N nb = kT/C (3) 

where W(~ o) is the transfer function at the resonance ~o' 

width, in agreement with the equipartition principle. 

and B N is the noise band- 

Since the response of the resonator to a voltage delta function of amplitude 

VST s has an amplitude VSTS~o, the signal to noise ratio (SNR) is 

SNR = V2T2_~C/kT (4) 
~ o 
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However, if one observes the input spectrum (instead of the output) through a 

low pass RC filter with noise bandwidth 1/2T , the noise variance is 

ON2 = 2kTR/2T = kT/L0oTCQ, (5) 

and the response to the delta function is VSTs/T . The SNR is therefore 

s.R : v ~ o C Q / ~ k ~  (6) 

with an improvement factor equal to Q/%T • In fact the input spectrum (2) is inver- 

sely proportional to Q because for large values of Q the dissipation is low and less 

energy must be provided to ~he resonator to keep it at the level kT/C. In particular 

the input spectrum can be observed from the output of the resonator by using an in- 

verse filter W -I as shown in Fig. 1 (b). 

We have assumed for simplicity the availability of ideal (noiseless) amplifiers, 

but if we take into account this noise we just reduce the improvement factor to a 

smaller value withou t modifying the substance of the argument. 

Figure 2 shows the various phases of the overall process of gravitational event 

detection as well as the role of the different technologies. In what follows we shall 
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Fig. 2. Block diagram of a gravitational wave experiment . 

deal mostly with filtering that is a linear processing of the signals, and also with 

the antenna system, in order to define a model for the generation of the signals, leav- 

ing apart the nonlinear processing pertinent to the final detection process. Most of 

the presentation will be based on a previously published paper [7]. We shall not con- 

sider questions related to the quantum limit as discussed by Giffard [8], Braginski 

and others. We shall examine some algorithms and study their performance in terms of 
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both SNR and sensitivity to short bursts of resonant gravitational radiation, The 

theoretical analysis will be compared with experimental data obtained with two of our 

cryogenic antennae the small test antenna (24 kg) and the intermediate antenna 

(390 kg). 

II MATHEMATICAL MODEL OF THE ANTENNA AND OF THE ANALOG PROCESSING SYSTEM. 

AS a basis for the development and discussion of the filtering algorithms we 

require a mathematical model of the antenna and of the electronic analog systems that 

are connected to it as shown in Fig. 3. We make specific reference here to our anten- 

nae that use piezoelectric transducers and field-effect transistor amplifiers. 

cos C~Rt 

PSD ~ x(t) 
PREAMP 

BAR 

TUNED 
AMP 

sin OJRt 

Fig. 3. Gravitational antenna, piezoelectric detector and 

electronic instrumentation. 

The transfer function of a Weber-type gravitational wave antenna near its fund- 

amental longitudinal resonance frequency can be discussed in terms of the equivalent 

circuit of Fig. 4, where the various parameters represent the mechancial and electrical 

characteristics of the system [9,10] and the voltage generator 

V = f/eC = 2LM}~/~2~C (7) 
2 2 

represents the gravitational pseudoforce f applied to the equivalent resonator; h(t) 

the pertinent variable components of the metric tensor, L and M the length and mass 

of the antenna, and e the voltage coupling factor. ~ The loading effect of the elect- 

ronic preamplifier can be neglected because of its high input impedance (in our case 

R. = i01°~ , C. = 20 pF). 
In in 

The circuit of Fig. 4 leads to a third order model but a simpler and more real- 

istic second order model can be derived by taking into account the weak dependence on 

the frequency of the dissipative parameters of the system, i.e. the mechancial quality 

factorof the antenna QM and the dielectric dissipation factor of the piezoelectric 

ceramics tan 6. 
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Fig. 4. Equivalent circuit of a gravitational antenna at the fundamental 
resonant frequency. 

The transfer function from input force to output voltage can be represented by 

the standard second order model for lumped parameter systems 

W(j0~) = 8[i + j~0/QLO R ~02/0JR ] -Z (8) 

to a very good approximation if QM >> I, tgd << I, as in most cases of interest. 

Here Q is the overall merit factor of the antenna, ~R its resonant frequency and 

the energy coupling factor. 

We consider as standard input signal the pseudoforce 

f(t) = fo sin~0Rt (-T /2 _< t < Tg/2) 
g 

= 0 (otherwise) (9) 

with coefficient 

f = -LMh ~2 /~2 (i0) 
o o R 

due to a GW packet having this time dependence and amplitude h . 
o 

From equations (7) and (8) the voltage response at the output of the piezoelectric 

ceramics can be evaluated for t ~ Tg/2 in the form 
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-t/T v v (t) = V e cos0~Rt 
s s 

(11) 

which holds for T << . Here 
g 

T v = 2Q/m R (12) 

is the amplitude decay time of the loaded bar and 

V = -Lh e0~ T /~2 
s o R g 

(13) 

In addition to the signal, we have to consider the contributions of various 

fluctuation sources, which we express in terms of narrow band (resonant) and white 

contributions. 

The narrowband contributions have a spectrum approximately proportional to 

IW(j~)I 2 and are due to the mechanical dissipation of both the bar and the piezoelec- 

tric ceramics (Brownian noise), to the electrical dissipation of the ceramics, of the 

insulators and of the cables, and to the current noise of the input stage of the pre- 

amplifier. The variance of the total narrowband noise can be expressed as 

V 2 : kT~/C + I2n(mR)8~Q/mRC ~ - kT 8/C (14) 
nb 2 e 2 

where T is the temperature of the bar, k the Boltzmann constant and T the equivalent 
e 

temperature of the bar due to the heating effect of the external noise currents I2(~). 
n 

The p e r t i n e n t  a u t o c o r r e l a t i o n  f u n c t i o n  i s  g i v e n  w i th  good a p p r o x i r ~ t i o n  f o r  Q >> 1, 

by the expression 

R n b ( T )  = V 2 -I~l/~v nb e cos~RY • (15) 

The power spectrum of the white noise is 

S (£0) = V2(~) + I2(03)/0~2C 2 , (16) 
o n n 2 

where V2(~) represents the voltage noise of the preamplifier. We neglect the dynamics 
n 

of the preamplifier since in our case it is wideband with 3dB limits at .7 and 40 kHz; 

the same consideration applies to the following selective amplifier that is tuned at 

(OR with Q = i0. (A wide band preamplifier allows the simultaneous acquisition of data 

from different antenna modes, which can then be used to study coincidences between odd 

modes, and anticoincidences between odd and even modes. Such data can in principle 

assist in discriminating between gravitational signals and pulses of other origin). 



347 

In what follows we shall not indicate explicitly the gain of the various ampli- 

fiers and phase sensitive detectors (PSD's); the level of all the signals is there- 

fore referred to the input of the analog electronic chain. The total signal at the 

input of the PSD's can be written in general in the form 

v(t) = [Vx(t) + n (t)] cos ~R t + [Vy(t) + n (t) ] sin ~R t (17) 
x y 

since the gravitational signal is already in quasi-harmonic form with Vx(t) = V s exp 

[-t/Tv] and v (t) = 0 (see equation (ii)), and the ~oise signal can be expressed acc- 
Y 

ording to the Rice decomposition [II] 

n(t) = n (t) cos ~R t + n (t) sin ~R t (18) 
x y 

The terms Vx(t), Vy(t), nx(t) , ny(t) of equation (17) represent the envelope of the 

pertinent signals; they contain all the interesting information and in general their 

variations are small over a time scale ~l. 

The two PSD's perform on the signals the following operations : 

x(t) = (A/t O ) t dt'v(t') exp[-(t-t')/t O] sign [cos ~t'] 
--oo 

t 

y(t) = (A/t O ) f dt'v(t') exp[-(t-t')/to] sign [sin ~t' ] 

--o0 

(19) 

It can be shown that in order to obtain an output v(t) for an input v(t) cos ~t it is 

necessary that A = 8/x • (Usually this factor is included in the gain of the instru- 

ment). The sign functions can be expanded in series and the higher order harmonics 

of the input signals are negligible due to presence of the above mentioned tuned amp- 

lifier (see Fig.3 ) Therefore we can replace A sign(cos ~R t) with 2 cos ~R t in (19) 

and similarly for A sign(sin ~Rt). 

The linearity of the operation allows the PSD's t~ be decomposed into two linear 

subsystems: the first, memoryless and time-varying, performs the product 

x' (t) = 2v(t) cos ~R t , (20) 

while the latter, dynamic and time-invariant, performs the integration 

t 
x(t) = t -! f dt' x *(t') exp [-(t-t')/to] (21) 

o 

--00 
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with transfer function 

W (job) - X(j~)/X' (j~0) = (i + j~Oto)-I = 8 /(8 + j~0), (22) 
P 2 2 

= I/t ° . The bandwidth of the dynamic subsystem is very small (from a frac- where ~2 

tion of Hz to a few Hz) and in any case much smaller than v R. 

The total signal immediately prior to this "integration" can be found by substi- 

tuting (17) into (20): 

x' (t) = [Vx(t)+n (t)] (l+cos2~Rt) + [Vy(t)+n (t)] sin2£0Rt , 
x y 

y' (t) = [v (t)+n (t)] (l-cos2£0Rt) + [Vx(t)+n (t) ] sin2~0Rt. (23) 
y y x 

The second harmonic components in (23) are eliminated by the integrator (with transfer 

function (22)), and therefore the two outputs x(t) and y(t) depend only on the perti- 

nent envelope functions of the representation (17) filtered according to (22). 

The response of the PSD's to the noise can be obtained by evaluating the auto- 

correlation function of the signal x'(t) when the input is n(t) with power spectrum 

S (~) and autocorrelation R (T): 
nn nn 

Rx,x, (T) = <{4n(t+T)cost0R(t+T) on(t)cost0R(t) } > (24) 

Because of the independence of n(t) and cos~Rt we have from their autocorrelation 

functions 

Rx, x, (T) = 2Rnn (T) COS0JRT , (25) 

with a similar result for the y channel. The spectrum can be obtained from the auto- 

correlation in the form 

f+oo 

Sx, x (0~) = dT R x x, (T)e-J~0T = Snn(0b+0J R) + S (~0-£0 R) (26) 
' ' nn , 

-co 

which shows the effect of transposition of the spectral content of the input from 

~R + ~' "MR + ~ to the angular frequency ~. 

Finally, at the output of the PSD's one has 

Sxx(~) = S (£0) = [Snn(~0+~ ) + Snn(G0-~0R)]/(l+~02t2) (27) 
YY R o 
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This follows from (22) and the general theorem that gives the output spectrum of a 

linear system as a product of the input spectrum and of the square modulus of the 

transfer function of the system [ii]. 

The above analysis has been carried out for the case when the reference frequ- 

ency of the PSD's is exactly equal to the resonant frequency of the antenna, i.e. 

when there are no 'beats'. The resonant frequency of a cryogenic antenna can be taken 

to be very stable and this, together with the use of a high quality reference oscilla- 

tor, permits us to neglect the beats to a very good approximation over the time scale 

of interest for data analysis. 

Since all further processing is done on the demodulated signals x(t) and y(t) 

it is useful to characterize the dynamics of the antenna in terms of its equivalent 

low-pass transfer function. 

The expression (19) shows that as long as Tg << ~0R-i , the envelope of the input 

applied to the antenna can be very well approximated by a delta function of amplitude 

f ~ . Since the output envelope is given by (Ii) , the equivalent low pass transfer 
og 

function of the antenna takes the form 

W 1 (j~) = ~Q e -jIT/2 (l+j~0T)-I 
A v 

(28) 

The same result can also be obtained by substituting ~ ~ (~ -~R ) in (8). 

We note that the factor exp(-j~/2) has the effect of exchanging the two compon- 

ents (cosine and sine) of the signal. It is due to the fact that at the resonance 

frequency W(j~) is pure imaginary. We shall neglect this in our model since it can 

be taken into account by a simple relabeling of the two output channels. We shall 

also omit the gain factor ~Q in order to refer the level of all the signals to the 

input of the electronic chain. Thus the equivalent low pass transfer function of the 

antenna becomes 

WA(J~0 ) = (I+j~0T)-I = ~ (8 +j0~) -I (29) 
v ! 1 

where 

8 : T -I= 0JR/2Q . (30) 
I v 

To summarise, the antenna and its analog processing system can be represented 

by the schematic of figure 5. 
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Un(t) 
I 

Ug(t ,~____~ ~ 
u(t) 

Fig. 5. 

e(t)  -• COS ~-~ Wp(~) jL___,, x(t) 

sin i 

Equivalent low-pass representation of the dynamics of the 
antenna and of the analog processing system. 

In this representation one can lump all the resonant noise contributions in an 

equivalent generator u (t) with white spectrum 
n 

= 2V2 n /8 , (31) Suu b I 

applied at the input of the antenna, together with the gravitational excitation u (t) 
g 

which can be taken to be a Poisson sequence of delta functions and therefore has a 

white spectrum i~ turn. 

The wide band noise contributions are lumped in a signal e(t) with white spectrum 

See (~0) = So(~0 + £0 R) + So(~0 - ~0 R) = 2 So(~0R) (32) 

we recall here that the two output signals are sampled with time interval At before 

being converted from analog to digital form. Normally one might select At on the 

basis of the Nyquist criterion 

At < (2f*) -I (33) 

where f* is the frequency above which the spectrum of the total signal is negligible. 

In our case f* could be taken to be ~ 10/2zt since the cutoff frequency of the wide 
o 

band spectrum is i/2~t . However we are interested here in the detection of a poss- 
o 

ible gravitational energy addition to the noise energy of the system rather than re- 

construction of the original analog signal. The cutoff frequency of the interesting 

part of the spectrum i.e. that which may contain gravitational signals, is not I/2~t 
o 

but a much lower value I/2ZT . We make the customary choice At = t which, as we will 
v o 

show in section III, has some interesting advantages. 

We mention here that it is also possible to model the system and analyze the 

data with reference to a configuration which does not use the PSD's, whose task, as 
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explained above, is to translate the frequency band of interest from the resonance of 

the antenna to zero frequency. In this case, instead of using a first order model 

with two output variables for the antenna we would have a second order model with a 

single output variable. By proper application of the sampling theorem to this model 

it can be shown that the sampling rate of the data acquisition system becomes only 

two times larger than the sampling rate for each of the two channels of the standard 

system; the total number of samples generated per unit time is therefore the same in 

both cases [12]. 

III DATA ANALYSIS ALGORITHMS 

The data analysis algorithms that have been used by the various experimenters 

aim to allow detection of gravitational signals by proper treatment of the experimental 

data. 

We shall denote in what follows as innovation [13] the total signal u(t) whose 

effect is to modify the energy status of the antenna. One of the components of u(t), 

that is the noise component, contributes continuously small amounts of energy which 

compensate the dissipation processes and maintain the average noise energy at the 

thermodynamic level. The other, that is the signal component, provides small amounts 

of energy which are expected to be concentrated in time so as to allow their detection 

in spite of a much smaller average power level, as shown by the example of section I. 

(a) THE DIRECT ALGORITHM (D) 

The simplest way to try to detect the innovation signal u(t) is to consider the 

quantity 

r 2 (t) = x 2 (t) + y2 (t) . (34) 

2 in the Gbsence of noise we consider as 8tandGrd In order to compute the signal r s 

innovation the signal given by (9) arriving at t = 0 at the antenna input, which 

becomes 

x (t) = Vs[eXp(-8 t) - exp(-8 t)] [i - 8 /8 ]-I )35) 
S 1 2 1 2 

at the PSD output. For simplicity we take this signal to be in phase with the refer- 

ence oscillator thus, in which case Ys(t) = 0. We then get 

r2(t) = V 2 [exp(-8 t) - exp(-8 t)]2[l 8 /8 ]-2 (36) 
s s 1 2 1 2 

If the input wave packet has an arbitrary phase ~ the response of the two channels 

will be x(t) = x (t) cos ~ and y(t) = Ys(t) sin ~, but r 2 would have the same value. 
s s 
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In order to compute the noise we consider that both x(t) and y(t) have zero 

mean and normal distribution with variance 

O 2 = R (0) = R (0) = R(0). 
o xx yy 

Let us now find R(T) from the filtering chain shown in figure 5. 

R(T) = (i/2~) f d~0 S(0~) e j00T, 

where S (~0) = S ([0) = S (~0) is the power spectrum of x(t) and y(t). 
xx yy 

mentioned in section II we get 

We have 

(37) 

Thus 

(38) 

From the theorem 

s(~) = SuulWAl21wpl 2 + s lwp12 <39> 
ee 

S(0)) = 8uu[82/(62+£02)]i 1 [62/(62+[°2)]2 2 + See [62/(62+~02)]2 2 " 

Subsituting in (38) and integrating we get 

e x p ( - 6  IT ( ' )  - 6 e x p ( - 6  I l)][s 6 /=(6=-62)] R(T) = Suu[62 z z 2 z 2 2 z 

(40) 

In particular 

+ S (6 /2) exp(-6 ITI) . (41) 
ee 2 2 

R(0) = S 6 6 /2(6 +6 ) + S 6 /2. (42) 
uu I 2 I 2 ee 2 

It is convenient to use the quantities V2nb and So, introduced in section II and used 

in previous publications [4], and to define the new parameters 

Then R(T) becomes 

R(T) = V 2 exp(- 6 
nb 

and 

V = 6 /6 (43) 
1 2 

F = See/Suu = 6 So/V2nb • (44) 
I 

zTxl){[exp(Szlxl(l-v)) -v]/[l-v 2] + F/V} (45) 

R(0) = V 2 [I/(I+v) + F/~] (46) 
nb 
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We notice that, neglecting the electronic noise, the variance at the PSD output R(0) 

is nearly equal to the variances at the PSD input, V 2 This is because we have con- 
nb" 

sidered the ratio of the output to the envelope of the input as equal to one. If the 

signal is absent or in general if its average contribution is negligible with respect 

to the noise, the variable r2(t) will have exponential probability density function 

F(r 2) = (i/2~ 2) exp-r2/2~ 2 , (47) 
o o 

and the signal to noise ratio (SNR) for this direct algorithm will be 

(SNR) d = r~ (t)/2~ (48) 

The largest SNR value occurs at a time 

Thus we can write 

t *  = [Zn(i/7) ]/~ (i-~/) (49) 
2 

with 

The behaviour of (SNR) d 

= V2K./V 2_ 2[i/(l+y) + F/y] (50) (SNR) d s a nD 

K d = [77/(1-7) - 7 I/(I-7) ]2/[1-712 (51) 

versus y for F = 10 -3 is shown in figure 6. F =10 -3 is very 

For different values close to the values appropriate to our gravitational antennae. 

of F the behaviour is qualitatively very similar. 

The spectral energy density f(v) of the gravitational radiation pulse which 

produces a certain value of rs2 r 

2 = V:Kd rs , (52) 

is obtained from equation (13) using [4] 

f(v) = c3wZh2T /321~G . 
o g 

We get 

(53) 

f(v) = c3~3r2s/32G~2L2K d . (54) 
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Fig. 6. The signal to noise ratio as a function of y with F = 10 -3 for the 
different algorithms of data analysis. 

(b) THE ZERO ORDER PREDICTION ALGORITHM (ZOP) 

A much better way to detect an innovation signal than that of the direct algor- 

ithm is to consider the quantities 

x (t) = x(t) - x(t- At), 
z 

yz(t) = y(t) - y(t- At). (55) 

In fact, on a short time scale the variations of the output due to the noise are rel- 

atively small, while the signal, if present, provides a rather sharp variation accord- 

ing to equation (36). At time t, in the absence of a signal, the values of x(t) and 

y(t) are very close to the values at a previous time t - At (this is the zero order 

prediction for x(t) and y(t) and by taking the difference we try to estimate the poss- 

ible innovation. This algorithm was suggested by Gibbons and Hawking [5] and used by 
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various experimenters. 

AS far as the noise is concerned both Xz(t) and Yz 

distribution with variance 02 
z 

(t) have zero mean and normal 

and 

02 = <x2> = R(0), (56) 
z z 

R(0) = 2R(0) - 2R(At) . (57) 

We introduce the variable 

which has normal distribution 

o2 = x 2 + y2 (58) 
z z z 

F(PZ2) = (1/202)z exp(-p2/202)z z (59) 

In order to get the SNR for this algorithm we consider the signal due to the standard 

innovation 

with 

2 = V 2 K (60) 
Psz s z 

K = [exp(-8 At) - exp(-8 At)]2[l-y] -2 (61) 
s I 2 

and the noise 202 . Thus 
z 

= p2/202 = KzV2s/4 [R(0) - R(At) ] (62) (SNR) Z z Z 

Clearly (SNR) is function of At which can be chosen conveniently. Also 8 can be 
z 2 

chosen at will, whilst 8 is fixed and determined by the bar and the adopted trans- 
I 

ducer. It seems reasonable to take 

8 = At- 1 (63) 
2 

and sample x(t) and y(t) at At time intervals. In this way one has nearly complete 

information made of nearly independent data. We have 
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R(At) = (V2b/e)[(exp(l-y) - y)/(l-y 2) + F/y] (64) 

and 

K = [(e -Y - e-l)/(l-y) ] 2 , (65) 
z 

which shows that (SNR) depends only on y for each value of the parameter F. 
z 

It is possible to find an approximate value of y which makes (SNR) maximum by 
z 

noticing that, for y << I, ~2(y) varies with y much more than K . Neglecting with 
z z 

respect to unity terms of the order of y2 we find 

½ 
Ym = ((e-l) F ) , (66) 

corresponding to 

Atm = ((e-l)TvSo/V2b)½ (67) 

In figure 6 we show the behaviour of (SNR) 
z 

ates the value Ym" 

versus y for F = 10 -3 . The arrow indic- 

We can derive the spectral energy density of the gravitational radiation pulse 

2 by replacing r~/K d with p2 /K in equation (54). which produces a value of Psz sz z 

(c) THE FIRST ORDER PREDICTION ALGORITHM (FOP) 

An improvement over the ZOP algorithm can be achieved by making a better predic 

tion of x(t) and y(t) (first order prediction). Indicating the predicted values by 

Xp(t) and yp( t )  we put 

x (t) = a x(t - At) 
P 

yp(t) = a y t - At) (68) 

and find that value of a which minimizes the square deviation 

o 2 = <[x(t) - x (t)]2> 
P P 

It can be easily demonstrated Ill] that 

(69) 

a = R(At)/R(0) (70) 

and thus 
(~2(At) = R(0) (i - R2(At)/R2(0)) . (71) 
P 
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Let us now consider 

X(t) = x(t) - x (t) 
P 

Y(t) = y(t) yp(t) (72) 

The These variables have zero mean and normal distribution with variance ~2 (At). 
P 

quantity 

Q2 (t) = X 2 (t) + y2 (t) (73) 

has distribution 

F(p 2) = (1/20 2 )p exp(-p2/2Op). (74) 

The signal due to the standard innovation is given again by (36), that is 

Ps2 = V 2s Kp (75) 

with K = K . 
p z 

The noise will be <p2>= 2 02 and thus 
P 

= KpV~ (SNR)p /202p (76) 

Also in this case it is convenient to put ~t = 8 -I and then (SNR) 
2 P 

of F and y. 

is only function 

The approximate value Ym which maximizes (SNR)p is obtained by neglecting terms 

of the order of (F/>) 2 and y2. We find the same results expressed by (66) and (67). 

In figure 6 we show (SNR) versus ~ for F = 10 -3 . We derive the spectral energy 
P 

density of the gravitational radiation pulse which produces a value of Q2 by replacing 

r2s/K d with ~2/K in equation (54). 
s p 

(d) THE WIENER-KOLMOGOROFF ALGORITHM (WK) 

The prediction can be further improved by using more data samples, and in gen- 

eral the best linear prediction can be obtained by using all past and future data, 

weighted according to the Wiener-Kolmogoroff theory. However, we are not interested 

in the prediction of the variables x(t) and y(t), but rather in the estimation of the 

innovation acting at the input of the system. 
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The best linear estimate ~ (t) for the x channel (in-phase) component of the 
x 

i n n o v a t i o n  i s  

(t) d~ x (t-~)w(~) 
x _oo 

(77) 

where w(e) is the weighting function, i.e. the impulse response of the optimum filter, 

which is determined by minimising the square deviation 

OW2 = < [u x(t) - ~x(t)]2> " (78) 

We remark here that for normal processes, as in our case, the linear mean square est- 

imation gives the same results as a more general nonlinear estimation algorithm. 

By applying the orthogonality principle of linear mean square estimation 

<[u(t) - u(t)] x(t)> = 0 l Vt' , (79) 

between the deviation and the observation we obtain 

oo 

R (T) = f de.R (~-e)w(U) ~ V~ (8O) 
UX XX I -oo 

where T = t - t ~ . 

By applying the Fourier transform to (80) we obtain the transfer function of 

the optimum filter as 

W(j~) = Sux(~)/Sxx(~ ) (81) 

where S (~) is the cross spectrum of the signals u(t) and x(t), that is, the Fourier ux 

transform of their crosscorrelation function. 

The solution of (80) is very simple because of our choice of the estimator (77) 

which uses all post and future data. A more complex procedure is required if one 

wants to work in real time, i.e. to use only past data. However, this is not a prob- 

lem because in practice the analysis is performed on data stored on magnetic tapes so 

that one has access to both the past and the future; a quasi-real time analysis is 

alsopossible without modifying the algorithm by using a moderate amount of future 

data with a time scale determined by the correlation times of the data as given by 

(41). From figure 5 we see that 

= S W* W* (82) 
SUX UU A P 
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since the cross spectrum between the input and the output of a system can be obtained 

by the product of the input spectrum with the complex conjugate of the transfer func- 

tion of the system. S is given by (40). We obtain 
xx 

W(jOJ) = (7/F) (82+j~0) (8 +j~)/(~02+82) 
1 3 

(83) 

with 

% 
8 = 8 (i + i/?) (84) 
3 i 

The transfer function can also be put in the form 

w(j~) = (WAW P)-1 (I+F/IWAI2)-I 

to show that it operates as an inverse filter to cancel the dynamics of the antenna 

and electronics. 

We have from (83) 

co  

w(t) = (1/27) f dbJ.W(j0J)e joJt 
-0o 

= (7/F)[~(t) + ((8 +8 )(8 +8 )exp +8 t) /28 ] (85) 
2 3 1 3 3 3 

where the -sign is for t > 0 and the + sign is for t < 0. 

This algorithm operates just as a filter which can be added to the filtering 

chain of figure 5. In order to find the mean square deviation of the estimation ~(t) 

we must compute the autocorrelation R~^(T) which, in turn, is obtained from the power uu 

spectrum S^^(~) of the quantity ~(t). We have uu 

Ŝ ÛU = SxxIW(j~) 12 = Suu/[l + F(~2+82)/82]I 1 ' (86) 

which gives 

~^^ = [82s exp(-S l~I)]12r8 (8v) 
uu 1 uu 3 3 

Thus the mean square deviation is 

2 = R^^(0) = S 82/2B F 2 /8 F (88) 
OW uu uu I 3 = Vnb81 3 

In order to find the SNR we compute now the response to the standard gravitational 

innovation which at the PSD output is given by (35). We have, considering only the 
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variable x (t) , 

f S (t) = d~.x s(t-S)w(~) = 
_co -co 

Solving the integral with w(~) given by (85) we get 

t 
dc~.x (t-e)w(~) . (89) 

s 

S(t) = (Vs8 /28 F)exp(-8 t). (90) 
1 3 3 

Finally, considering the two variables x(t) and y(t) we have 

(SNR) w = $2 (t)/2O~ 

= (Vs/Vn2b) (~ /88 I~)exp(-28 t )  , (91) 
I 3 3 

which is a maximum for t = 0. Using (84) with t = 0 we have 

= 2 2 8(l+F)g~ (92) (SNR) W Vs/Vnb 

The interesting feature of this result is that (SNR) W does not depend on the integra- 

tion time of the PSD, t = 8 -I , which can therefore be determined by other considera- 
o 2 

tions. For instance we can take t very small in order to analyze in greater detail 
o 

a possible gravitational wave pulse, or it can be taken very large if a small number 

of samples is wanted. 

The above result is, however, only an approximation due to the finite sampling 

time At. Thus if the data are sampled at At time intervals, the variables x(t) and 

y(t) become discrete and the result is not fully valid. Clearly it will maintain its 

validity for 

At << 8-I (93) 

since 8 ] is the characteristic time of this filter. 
3 

The application of the WK filter to the data, that is the construction of a 

set of coefficients from (85) and the evaluation of the response to the standard gra- 

vitational wave pulse is shown in detail in an appendix of reference [7]. 

The largest value of the response of the WK filter is obtained at t = 0 and 

therefore considering the two variables x(t) and y(t), we have 

PSW2 = S2x + s2y = v2s KW (94) 
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with 

K w = [y/(1-y)] [(8 +8 ) (8 +8 )/2F82] [exp(8 /28 ) - exp(-8 /28 )] 
2 3 I 3 3 3 2 3 2 

X { exp[-(8 +8 )/g 1. [l-exp[-(8 -8 )/8 11-'~ 
1 3 2 1 3 2 " 

-exp[-(8 +8 )/8 ] . [l-exp[-(8 +8 )/8 1]'i} 
2 3 2 2 3 2 

Similarly to (54) we can write for the spectral energy density of the gravitational 

radiation pulse 

(95) 

f(~) = c3~3Q~W/32G~2LaK w m 

The variable Q2 will have exponential distribution 
W 

with 

(96) 

~¢°w)  = ( i / 2 ~ ) e x p c - ° ~ / 2 ~ f ) w  ~ , ¢97) 

= ~ / 2  = V~nbS /B r = V ~ n b ( r ( r + l ) ) - "  OW 3 (98) 

IV EXPERIMENTAL RESULTS 

In order to check the correctness of our data analysis we have applied it to 

measurements made with our small (M = 24.4 kg, ~ = 7523 Hz) gravitational wave antenna t 

cooled to 4.5 and 1.5 K and with various values of At and t . The experimental results 
o 

agree very well with the theoretical analysis except for large values of At as will be 

shown in the following. 

In Table 1 we give the basic parameters for various runs. More details on the 

experimental set up are given in a previous paper,[4],where runs I, 2 and 3 were con- 

sidered. 

In Table 2 we give the typical parameters for the various algorithms previously 

discussed, namely: the direct algorithm, the FOP and WK algorithms. As expected, the 

WK algorithm gives the best SNR. In the last four columns we show the computed and 

measured values for the FOP and WK standard deviations. We notice the very good agree- 

ment except for the WK value for run 4 where At = 1 s. This disagreement is due to 

the fact that in our theoretical analysis we have considered only continuous processes 

while the data sampling procedure makes the data discrete. Thus our model applies only 

for At << T • A good agreement is obtained with properly treated discrete data as we 
v 

will show in Section V. 

It is possible to define [4] an effective temperature from the standard deviation 
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I RUN 1 2 3 4' 5 

From UT,date 19.21,Mar 01 19.34,Apr 18 19.23,Apr 19 18.52,Apr 20 19.16,Apr 21 

To 07.10,Mar 02 07.42,Apr 19 07.31,Apr 20 07.56,Apr 21 06.24,Apr 22 

T (K) 

At (s) 

Yt (s) 
o 

T (s) 
v 

4.5 

0.030 

0.034 

2.714 

4.5 

O.100 

0.108 

2.736 

1.5 

0.i00 

0.108 

3.778 

a (V/m) 

Q 

/So(nV/~z) 

2 (nV 2 ) Vnb/ 

T (K) 
e 

Table i. 

2.32x10 

64100 

1.01 

172 

6.35 

2.28xi0 

64700 

0.98 

156 

5.93 

2.25xi0 

89300 

0.98 

ll0 

4.28 

4.5 

1.000 

1.000 

2.736 

2.28xi0 

64700 

0.98 

157 

5.97 

1.5 

0.300 

0.325 

3.778 

2.25x10 

89300 

0.98 

113 

4.4 

RUN 1 2 3 4 5 

Txl03 

Fxl03 

K d 

K 
P 

SNR d 

SNR 
P 

SNS~ 

G2/K (nV 2 ) 
P P 

Computed 

Measured 

O~/Kw (nV2) 

Computed 

Measured 

12.5 

1.093 

0.895 

0.339 

228.5 

39.5 

1.125 

0.767 

0.350 

222.0 

28.6 

1.155 

0.811 

0.354 

216.1 

68.5 

1.127 

0.312 

0.263 

221.6 

86.0 

1.125 

0.630 

0.630 

222.0 

0.416 

1.59 

3.78 

54.1 

48.5 

22.7 

22.5 

25.7 

26.2 

0. 387 

3.03 

3.72 

20.9 

23.5 

0.401 

2.70 

3.67 

20.4 

19.5 

15.0 

15.2 

0.213 

0.786 

3.72 

99.8 

100.3 

21.1 

613.4 

0.337 

2.59 

3.72 

21.8 

19.5 

15.2 

17.4 

Table 2. 
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of a given algorithm. We have for the i th algorithm 

i = T O~/K.V 2. (99) 
Teff e 1 i nD" 

Applying this definition to the experimental values given in Tables 1 and 2 we get 

the effective temperatures listed in Table 3 where, for comparison, we show also the 

RUN 

1 

2 

3 

4 

5 

DIRECT ALGORITHM 
d 

f(~) Tef f 

(GPU) (K) 

244 7.6 

245 7.7 

171 5.3 

451 14.0 

209 6.5 

FOP ALGORITHM 

f (~) T p 
eff 

(GPU) (K) 

57 1.8 

32 1.0 

24 0.76 

122 3.8 

24 0.76 

WK ALGORITHM 

f(~) T W 
eff 

(GPU) (K) 

27 0.83 

29 0.89 

19 0.59 

747 23.3 

22 0.68 

Table 3. 

effective temperature which can be computed for the direct algorithm (that is O~ = 02 
1 o 

in (99)). The lowest Tef f was obtained with the WK filter for run 3. The instrumental 

sensitivity in terms of the minimum observable spectral energy density is given [4] 

for the i th algorithm by 

f(~) = c3~3202"/32GL2~2Kil = kTeff/oGW , (lOO) 

where ~GW is the antenna cross section, with our experimental values we get 

f(~) = 782Te~f/M GPU , (101) 

M being the mass of the antenna in kg. 

The sensitivities computed with (i01) from the experimental Tef f values are 

also shown in Table 3. We notice that the best Sensitivity is 19 (~PU. This value is 

only about two times larger than that of the most sensitive room temperature gravita- 

tional wave antennae, with masses in the range of tons. 

Finally it is interesting to show the frequency of distribution of the experi- 
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i 1  

I . l , . I  

Z 

,o,I 

DIRECT 

FOP 

10 2- 
WK 

10- 

11 ~ II II l~lll - 

0 260 460 660 8o0 GPU " 
0 12'.5 25 K 

Fig. 7. Frequency distribution of the experimental data for three 
different algorithms in normalised form (M = 24.4 kg, April 
May 1978) 
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mental data for the various algorithms. As an example we show the data of run 1 in 

Figure 7. On the abscissa we report the normalised values, that is 

r2/K d , p2/Kp , Pw/Kw 

for the direct, FOP and WK filters. In this way it is possible to express the quanti- 

ties involved in the various filters with the same absolute unit (GPU or K). The con- 

version factor from GPU to K is 

1 K = 782/M = 32 GPU. (102) 

We notice that the most sensitive filter (WK) shows some data which do not follow the 

expected statistical distribution which is due to the Brownian and electronic noise 

only. These data, probably due to disturbances, could be eliminated by taking coinci- 

dences with another antenna having similar sensitivity. 

Various data analysis algorithms have also been applied to the results obtained 

from the cryogenic antenna (M = 390 kg, D = 1795 Hz) of Frascati, that operated at 
R 

4.5 K during June and July 1978 (14,15). In this case we had ~ = 5.2"107 V/m; T = 
v 

92.5s, S = 0.5 nV2/Hz, t = is. The data collected in more than 70% of the time from 
o o 

July 4 to July 17 (230 hours) is summarised in Table 4. 

ALGORITHM 

Direct 

ZOP 

WK 

o:/K i 
calc. 

(nv) 2 

2.54 

2.04 

•/K i 
meas. 

(nv) 2 

107.9 

2.82 

2.30 

Table 4 

The effective temperature of the data processed with the WK algorithm is 1.53 K and 

by using (I01) we obtain the sensitivity f(9) = 3.1 GPU. 

V DISCRETE TIME MODEL AND ANALYSIS 

The methods of system modeling and of data analysis considered in previous sec- 

tions, with particular reference to the WK filter, are based on a continuous time app- 

roach, while the actual data samples are available only at discrete values of time. 

This is an intrinsic weakness of these methods which, however, becomes apparent only 
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when the sampling time At becomes comparable with the decay time of the bar T 
v 

the results of run 4 in Tables 2 and 3). 

(c.f. 

More general results can be obtained by directly considering the data as func- 

tions of a discrete time abscissa [16]. The discrete time sequences x(i At) = x. and 
1 

y(i At) = Yi are defined by their statistical properties such as the autocorrelation 

function, and by the response to a standard gravitational delta excitation. We intro- 

duce the notation 

w = exp (-At/T) (103) 
v 

v = exp(-At/t o) (104) 

= t /At , (105) 
o 

where the parameter n provides an additional degree of freedom since it allows the 

choice of a sampling time interval At different from the integration time t of the 

PSD's. The autocorrelation (411 can be rewritten a~ 

R (n) K (wi~l + A = v ), (106) 
xx 

and the response to a gravitational pulse which is chosen to be a delta function syn- 

chronized with the sampling time is 

x (i) = V c(w I - v I) . (107) 
s s 

A discrete model for the generation of the data has been found in the form of an auto- 

regressive moving-average (ARMA) system. 

x i = aoU i - a I ui_ 1 + (v+w)xi_ 1 - vwxi_ 2 (I08) 

where u. is an uncorrelated (white) zero-mean normal sequence, and the coefficients 
1 

a ° and a_ 1 are chosen so as to obtain an autocorrelation with the parameters of (106). 

To this model we can now apply the various data analysis algorithms considered 

in section III. However, in this case a remarkable simplification is obtained by 

following the matched-filter approach. (We remark that this approach can be applied 

also when dealing with models based on continuous time data as considered by Hamilton 

[17]). The matched filter aims at recovering signals of known shape S(t) but of un- 

known time of arrival. This is done by using a filter with an impulse response equal 

to a time reversed version S(-t) of the signal [18] We assume here a background of 
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SNR 

At 

I I I , , _  

10 -2 10 ' *  1 

Fig. 8. Signal to noise ratio for the discrete-time matched 
filter as a function of sampling time At with dt = to, 
T = i. 
v 

white noise, which is not the case in general and in particular in our case. There- 

fore the proper matched filter section must be preceded in general by a filter section 

which whitens the noise. 

SNR 

10- ~' 10-*  1 

I 

10 

Fig. 9. Signal to noise ratio for the discrete-time matched 
filter as a function of the parameter ~. 
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We remark here that as the signal at the input of the system is assumed to be 

a Dirac delta function, then its spectrum is white, as is the spectrum of the noise, / 
/ 

and the matched filter provides the same results of the WE filter. However, the 

matched filter approach is more general [19] and can be used to detect events due to 

GW of finite duration as well as to search for pulses of given shape. 

In our case the whitening filter is the inverse of (108), that is 

li [xi -i i-2 ili-i (109) = (i/a o) - (v+w)x i + vwx + a ] 

and the response due to the standard signal is 

= )i 
lsi (2CVs/ao) (w-v) (ai/a ° (ll0) 

In the absence of electronic noise the response would be a delta function and no fur- 

ther filtering would be required. 

The filter matched to the response (II0) is 

z i = (C/ao) (w-v) li+ 1 + (al/a0) zi_ 1 , (iii) 

where the scaling factor 2V has been neglected. We note that this is an anticausal 
s 

filter; since the whitening section is based in principle on all past samples and the 

matching section is based on all future samples, the total matched filter depends on 

both the past and future data as is the case for the WK filter (77). However, the 

structure of the discrete-time matched filter, as well as the computations required, 

is remarkably simpler than the continuous-time WK filter. 

When considering both channels the (SNR) at the output of the matched filter is 

given by the following expression: 

(SNR) = (Vs2/2Vn2b)((l+~/)/(l-y)) (w-v) 2 (112) 

x {(l-w2)2(l-v2)2(l+A) 2 + 4A(w-v)2(l-v 2) (l-w2) } -I 

where 

A = (FIT) (1-7 2 ) (113) 

The behavious of (SNR) M is shown in figures 8 and 9. Figure 8, in particular, shows 

the dependence on the sampling time At for n = I, i.e. for At = t , with a decrease, 
0 

when At approaches Tv, that was not present in the theoretical behaviour of the SNR 



389 

of the WK filter of figure 6. 

Preliminary tests of the matched filter algorithm have been made on the data of 

run 4 of tables i, 2, 3. Results are in close agreement with the theory and provide 

a considerable improvement over those obtained with the continuous time WK filter. 
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SENSITIVITY OF A GRAVITATIONAL RADIATION ANTENNA INSTRUMENTED 
WITH DUAL MODE TRANSDUCER AND SUPERCONDUCTING QUANTUM 

INTERFERENCE DEVICE (SQUID) 

Jean-Paul Richard 

Department of Physics and Astronomy, University of Maryland 
College Park, Maryland 20742 U.S.A. 

I INTRODUCTION 

Since the pioneering development of Gravitational Radiation antennas by J. Weber, 

great effort has been devoted to increasing their sensitivity. In this regard, much 

improvement is expected to be achieved by the use of cryogenic techniques and pheno- 

mena associated with superconductivity. In this paper, we are concerned with the sen- 

sitivity of a resonant antenna for the detection of short pulses of gravitational radi- 

ation as expected from catastrophic astrophysical events. The instrumentation of the 

antenna will consist of dual mode transducers of three different types coupled to Super 

conducting Quantum Interference Devices (SQUIDS) with present and projected noise tem- 

peratures in the range 10 -3 to 10-7K, the latter figure being close to the quantum lim- 

it for linear amplifiers at the frequency considered. After a brief description of 

the antenna and its suspension, we discuss in some details the sensitivity of an anten- 

na instrumented with a dual mode quasi-resonant electrically coupled transducer and 

SQUID. Next, we discuss more briefly two versions of dual mode resonant and magneti- 

cally coupled transducers for antenna sensitivity near the quantum limit. 

II THE ANTENNA 

The resonant antenna considered here is shown in figures 1 and 2. It has a funda- 

mental mode at a radial frequency ~ . A transducer is mounted at its end to convert a 

mechanical energy in the fundamental mode into electromagnetic energy to be detected 

by a SQUID. Figures 1 and 2 also show a multistage suspension to provide a very high 

isolation from acoustic and seismic noise and produce negligible damping of the fun- 

damental mode [i]. The antenna is supported by a high quality factor four (aluminum 

or other) point support resting on a short stack of alternate layers of felt and steel 

plates. The frequency associated with the mass of the antenna and the stiffness of the 

four point support is made as low as practical to provide as much isolation as possible. 

This assembly is supported (fig. 2) by two 1.5 m long arms constituting a "bridge" stage 

with a resonant frequency of a few hertz. The arm ends rest on more filter stacks con- 

sisting again of alternate layers of felt and steel. The overall suspension can be 

compact and provides ~ 200 db of attenuation at ~a = 104" The assembly is cooled to 

cryogenic temperatures so that noise and damping originating in the antenna and in the 

suspension can be further reduced. 
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Fig. I. Four point support 
for antenna 

Fig. 2. Multistage suspension for antenna 
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III DUAL MODE QUASIRESONANT COUPLING 

The first antenna-transducer system considered here is shown in figure 3. 

s </// 

Q~ 
3 KS 

Fig. 3. dc biased resonant 
capacitance transducer 

It uses 

a dual mode quasireso- 

nant electrically cou- 

pled transducer. At 

the end of the antenna 

is mounted a paramet- 

ric capacitance, one 

plate of which is fixed 

to the antenna. The 

other has a dynamic 

mass m2, is coupled 

to the antenna through 

a flexible suspension 

with a mode at ~2 and 

a quality factor Q2" 

A high impedance cir- 

cuit maintains an elec- 

tric field between the 

capacitance plates. A superconducting transformer couples the transducer to a SQUID. 

The transformer inductance L 3 resonates at a radial frequency ~3 with C 3 to realise 

matching to the SQUID system. The two modes ~2 and ~3 are selected outside the band- 

with of the antenna system centered on ~ . A single mode version of that transducer a 

has been discussed in references 1 and 2. 

FLUCTUATION SENSITIVITY LIMIT 

The procedure used to evaluate the sensitivity of the antenna is first to deter- 

mine the smallest fluctuation in the energy of the antenna which can be detected. This 

information is then converted to a sensitivity to short pulses of gravitational radia- 

tion. The ac equivalent of the antenna system is shown in figure 4 were the indice 1 

refers to the antenna, 2, to the mechanical parameters of the transducer, and 3, to 

the electrical parameters of the tranducer, bias circuitry, superconducting transformer 

and SQUID system. Fluctuations will originate in mechanical damping (e~(~), e~(~)),in 

electrical losses of the transducer and in the bias circuitry (i~(~)), in up-converter 

noise,Josephson Junction flux transition fluctuations and possibly excess SQUID system 

• 2 d.2 nolSees(~) an iS(~).The latter are the transformed voltage and current noise density of 

the SQUID system respectively. L 3 is the impedance of the transformer primary when 

coupled to the SQUID. 
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:% 

I 
iL, 

--'~ is l~ I 

Fig. 4. Equivalent circuit for capacitance transducer 

The smallest antenna fluctuation which can be detected is determined by first 

assuming that the noise originating in the transducer and bias circuitry is negligible 

and then determing the conditions for this ass~ption to be true. With this assump- 

tion, the equivalent circuit shown on Figure 5 is adequate for the desired analysis. 

R,  

, e a 

I Ls 
- - C3 ~ es(~) 

There, the suffix 'a' refers to 

the antenna-transducer mechanical 

system. 

If, at a given moment, the 

state of the antenna is described 

by a vector in the complex plane: 

(X + iY)exp i~ t where X and Y a 

are appropriately normalized quan- 

tities averaged over an interval 

of time T, and related to the 

antenna fundamental mode by 

Fig. 5. Approximate equivalent circuit 
for capacitance transducer E = X 2 + y2, (i) 

then a fluctuation can be defined by: 

AE = E(X) 2 + (~)2~ T2 -~ (LIX) 2 + (AY) 2, (2) 

with AX = X (t + T) -X (t), dY = Y (t + T) -Y (t). 

X and Y are obtained by in-phase and quadrature phase detection of the signal at the 

followed by averaging and differentiating filters with time constant T. frequency ~a 

For values of T short compared with the antenna damping tJ/~e T a, the expectation value 
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of the fluctuation observed with the system shown in Figure 5 is (Appendix A) 

¢~--IkB)dE = TaTIT a + T S [ 8T~a/41" + (l'+lll')lST~ a 3 (3) 

where ~ is the Boltzmann constant, Ta, the thermal temperature of the antenna and TS, 

the noise temperature of the SQUID system: 

kBT s = e S(~)i S(~)/2. (4) 

is the coupling, including the contribution of the quasiresonance: 

8 = A3(Ca/C 3) < i, (5) 

with 

A3 = E - (~a/~3)2~-1 • (6) 

A" describes the impedance ratio realized with transformer and electromagentic reson- 

ance (and is different from ~ used in ref. i): 

~" = Z3/A3Zs (7) 

where Z 3 = i/ ~aC3 (8) 

Z S = eS(9)/is(V) (9) 

The first term in Eq. (3) results from thermal forces in the antenna, the second 

and third are respectively the backward reaction (narrow band noise) of the Josephson 

device and the white noise introduced by it. Eq. (3) is completely analogous to results 

obtained previously [1,2] for the same antenna-transducer system instrumented with high 

impedance electronics and without electromagnetic resonance [3]. Comparison of these 

previous results with Eqs. (3), (5) and (7) shows the effects of the L3C 3 resonance 

toward improving coupling between antenna and SQUID (8 ÷ A38) and matching of the high 

impedance transducer to the low impedance SQUID (Z s ÷ A3Z s) [4]. 

OPTIMISATION 

The fluctuations contributed by the SQUID are minimized by differentiating the 

second term in eq. (3) with respect to 8. This is valid as long as the resulting averag 

ing time is larger than the assumed length T of the pulses of gravitational radiation. 
P 
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The minimising condition is 

T~a~ = 2 ~ : (lO) 

it makes the two components of the SQUID noise equal and when inserted in eq. (3) glves 

an effective system temperature 

Tef f = kB T a + T S -- - . (ii) 

An alternate and useful expression is also obtained by replacing T in eq. (Ii) by its 

value when condition (i0) is satisfied 

(12) 

Two additional conditons follow i/mnediately for minimum effective temperature i.e., 

and 

l" > i, (13a) 

Ta ~ l+(X')2 11/2 
> F s (lab) 

These have to be satisfied together with eq. (i0) which we rewrite as 

T i/~+(I') 2 
- -  = 

Ta 8Qa 
(13c) 

The resulting effective temperature is then 

Tef f ~ T s • 
(13d) 

Two strategies can now be followed tO select antenna instrumentation. 

MINIMUM 8Qa REQUIREMENT 
With a massive (> i000 kg) antenna operating in the 1 khz region, large 8Qa are 

difficult to achieve experimentally. The minimum 8Qa compatible with an effective tem- 

perature close to the theoretical minimum (eq. (13d)) is obtained by selecting 

I" = i, (14a) 
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and Qa = Ta/Ts " (14b) 

These yield 

(T/Ta = ~-/~Qa = /~(Ts/Ta)' (14c) 

and an effective nolse temperature: 

Tef f = 2 T S . (14d) 

This strategy is used in the selection of the capacitance-SQUID transducer considered 

in this paper. 

SHORT AVERAGING TIME 

The averaging time obtained from eq. (14c) can be longer than desirable for coin- 

cidence experiments where source direction is investigated. In such a case, T is selec- 

ted first. The corresponding value required for the coupling is obtained from eq. (i0) 

8 = 2 ~l+(~ ~) 2/T~ (15a) 
a 

and a minimum value for the ratio Qa/Ta follows from eq. (13b) 

Qa/T a > [(i+~2)/(i+(i/i~)2) ] /~Ts (15b) 

The condition 

~ > 1 

remains to be satisfied for an effective noise temperature 

(15c) 

Tef f z T S. This second 

strategy is followed in the discussion of dual mode quantum limit systems. 

SENSITIVITY TO GRAVITATIONAL RADIATION 

A pulse of gravitational radiation of appropriate frequency, polarisation and direc- 

tion will produce a corresponding fluctuation given by [2,5] 

G~aVs2Tp21/2c3, AsE = exp(-w/2) (16) 

where G is the gravitational constant, m a the effective mass of the antenna, v s the 

speed of sound in the antenna material, c the speed of light and I the energy flux asso- 

ciated with the pulse (erg/cm2sec). A S/N ratio can be derived for the detection of 
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short pulses of gravitational radiation arriving at a rate R << I/T. ASsuming appro- 

priate coupling and matching, 

S/N = exp(-~/2)GmaVs2Tp2I/2/~-C3kBTsln(I/RT). (17) 

This result shows the importance of the factor ma/T s and the logarithmic dependence on 

the selected averaging time. The main advantage of lower antenna temperature and higher 

Qa is to make it easier to experimentally reach the sensitivity afforded by the Jose- 

phson junction, since the coupling required between the antenna and the SQUID system 

can be reduced (eq. 14b). 

EQUIVALENT ELECTROMAGNETIC QUALITY FACTOR 

Electrical noise originating in the transducer and the bias circuitry has been 

assumed to be negligible. A condition can be derived for the corresponding quality 

factor Q3 of the resonant system by setting an upper limit allowable to i~(~) in Figure 

4 and associating such noise current to damping (R 3) at a temperature T a. The follow- 

ing condition is obtained 

Q3 > [2A3/(~+1/~')] Ta/Ts' (18) 

which presumably could be satisfied with superconductor parametric capacitance and an 

appropriately high impedance link to the biasing voltage source. 

TRANSDUCER FREQUENCY AND QUALITY FACTOR 

The required coupling 8 is given by eq. (14b). This value is to be achieved by 

appropriate and realistic values of related parameters through the relation 

2 2 2 2 _ 
A38 = (A2m2~2/ma~ a ) (m2~2/E C 3 i) -I > 0, (19) 

where E is the electric field applied between the plates, and 

A2 = [i- (~a/~2)2] -I. (20) 

The inequality in Eq. (19) prevents capacitance collapse under excessive electric field. 

The condition on the transducer quality factor Q2 that the wide band fluctuations intro- 

duced by thermal noise in the transducer should be less than the narrowband noise in 

the observed bandwidth is 

(ma/m2)QaQ2 > [i + (~,)-2] (Ts/Ta~, (21) 
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and negligible reduction of the antennadamping time results from transducer damping 

if 

2 
Q2 > A2Qa (m2/ma) " (22) 

SPECIFIC CASES 

We have considered two specific cases. The antenna frequency and quality factor 

are assumed to be 1660 hz and 2x106. The coupling to the final toroidal one turn SQUID 

loop of inductance L s and noise impedance ZSO is assumed to be provided by a two stage 

superconducting transformer (Fig. 3), with coupling constants K S = 0.95 (toroidal trans- 

former) and K 3 = 0.9. The capacitance C 3 is 10-9F. The approximate inductance of the 

transformer primary for resonance with C3, taking into account the value of K's and 

matching 50x10-6m of superconducting wire. Further assumptions and parameters values 

are given in Table 1 and are realisable with present technology. 

TABLE 1 - TWO SPECIAL CASES 

PARAMETER 

i~%SS OF THE ANTENNA (kg) 

ANTENNA T~4PERATURE (K) 

SQUID NOISE T~4PERATUHE (K) 

S~JID I~qX~CTANCE L s (E) 

S~JID NOISE IMPEDANCE ZSO (~) 

REQUIRED VALUE OF A 3 

Q3 
L3, L~ (OPEN SECONDARY) 

~3 
SELECTED VALUE FOR m 2 (kg) 

(c3/c ~ ) 
REQUIRED FIELD E (v/m) 

VOLTAGE ACROSS 25xlO-6m 

CASE (a) CASE (b) 

~ - 2  X'=l 

1500 

4.2 

10 -3 

4 10 -10 

10 -7 

13.68 

58000 

9.27/15.57 

10386 

0.039 

40 

1.02xlO 7 

256 

1500 

10 -2 

10 -5 

2 10 -10 

3x10 -8" 

22.1 

22000 

9.55/16.04 

10234 

O. 039 

65 

7.93xi06 

198 

~ T E D  VALUE OF L 2 (H) 

REQUIRED VALUES OF 6 

A 2 

~o 2 

Q2 > 
CALCULATED VALUE OF L 1 (H) 

C 1 (F) 

REQUIRED AVERAGING TIME T (SEC} 

AND BANDWIDTH dU (Hz) 

EXPmr'TED FLUCTUATION (K) 

375 620 

7.67x10 -5 I. 13x10 -5 

59 14 • 1 

10085 10374 

350,000 18000 

7.2x106 1 • 19xlO 7 

1.4 10 -15 8.4 10 -16 

.12 .51 

4.1 0.98 

3x10 -3 3x10 -5 
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IV DUAL MODE RESONANT COUPLING 

The preceding analysis illustrates the usefulness of mechanical and electromagnetic 

quasiresonance for the realisation of an antenna of low effective noise temperature 

and corresponding high sensitivity to short pulses O f gravitational radiation. Paik 

has considered in great detail the advantages of single mode resonant coupling between 

antenna and SQUID [6,7] Figure 6a. Highest coupling requires T > T2, where T 2 is the 

K, K~ 
a) 

time required for the signal to trans- 

fer from the antenna to the resonant 

mass m 2. Thus we have the condition 

"[ > T 2 = (~T/OJa) m/~a/m 2. (23) 

~ m3 

b) 

Fig. 6. Single and dual 
mode transducers 

To a low SQUID noise temperature and a 

large antenna correspond short averaging 

times and a large m 2 (eq. 23). The strong 

electromechanical coupling required with 

large m 2 (>IKg or so) can become imprac- 

tical. We propose dual mode resonant 

coupling Figure 6b as a solution to this 

problem. There, the masses are in the 

ratio (ma/m2) = (m2/m 3) and the stiff- 
2 

nesses such that K2/m 2 = K3/m 3_ = ~a 

(unloaded). A computer simulation has shown that the signal transfer time T 3 for such 

a dual mode resonant transducer is essentially the same as for the single mode resonant 

transducer. Thus eq. 23 becomes 

1/4 
T > T 3 ~ (~/~a) ___(ma/m3) (24) 

With dual mode however, the strong electromechanical coupling to the SQUID is to be 

realised from the smaller mass m 3 instead of m2, and the required electric or magnetic 

fields can remain at realistic values while still achieving lower antenna effective 

noise temperatures and shorter averaging times. 

V DUAL MODE QUANTUM LIMIT COUPLING 

We will now consider the instrumentation of a 5000 kg (=2m a) antenna with a funda- 

mental mode at ~ = 104 . We will assume the availability of a SQUID amplifier opera- a 

ting near the quantum limit with a noise temperature of 10-7K. The purpose of these 

assumptions is to set most stringent requirements on the required antenna-SQUID coup- 

ling and on the transducer. We further assume that a resolution time of ~ 0.007 second 

is desired. With exact matching of the transducer and SQUID impedances (~'=i), the 
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coupling required (eq.(15a)) is 8 = 0.04 and the ratio Qa/Ta = 2.5xi08 from eq. (15b). 

It seems reasonable to assume that such a value of Qa/Ta would be achieved at some tem- 

perature between IK and 10-2K with aluminum or niobium antennas on simple four point 

supports [i0,ii]. Then from eq. (24) 

2 
(ma/m 3) =< (500) , (25) 

and we select m3=10g with a corresponding geometric mean value for m2=5Kg. Strong coup- 

ling to a 10g mass could be realised with electric or magnetic fields. The two cases 

we consider next use magnetic coupling. 

DUAL MODE INDUCTANCE MODULATION COUPLING 

The transducer shown in Figure 7 incorporates inductance modulation of coils A 

and B, a concept introduced earlier [7]. 

\ 7 

\ 

m9 

It incorporates dual mode through the 

= of m 2 and resonances at ~2 and ~3 ~a 

m 3. Also, the geometry of the reso- 

nant suspension of m 2 is selected for 

high mechanical quality factor [ii]. 

The total absence of mechanical stif- 

fness on m 3 is a characteristic which 

is not essential (m 3 could also be sup- 

ported by a structure similar to the 

one used for m2). A dc supercurrent 

flows in coil C to provide vertical 

support of m 3. As extensively discussed 

in [6,7], dc supercurrents in induc- 

tances A and B can provide electromag- 

netic stiffness to m 3 and strong coup- 

ling (~ 1/4) to a SQUID through a third 

inductance L c acting as transformer 

primary Figure 8. From experiment [8] 

carried out with masses larger than 

10g on mechanical suspensions, dc super- 

currents required to achieve resonance 

and a coupling of 0.04 appear realistic. 

Fig. 7. Dual mode quantum limit induc- 
tance modulation transducer 
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Smaller coupling as required with SQUIDS of higher noise temperatures would be obtained 

with reduced super-currents from the combined effects of quasi-resonance and weaker 

fields, the former effect being the more important. 

Fig. 8. Inductance modulation coupling 

DUAL MODE FIELD GRADIENT COUPLING 

An alternative realisation of a dual mode transducer operating close to the quan- 

tum limit is shown in Figures 9 and i0. In this transducer, a high Q resonant struc- 

ture is used to couple m 2 to the antenna, m 3 is itself coupled to m 2 in part through 

a mechanical suspension with a high quality factor. It incorporates a coil L C moving 

in a magnetic field gradient produced by dc supercurrents in coils L A and ~, themselves 

fixed with respect to m 2 [9]. The field gradient provides coupling to the SQUID through 

a superconducting transformer. It also provides additional (electromagnetic) stiff- 

ness to m 3. Thus if the mechanical resonance of m 3 is selected to be low enough, the 

coupling can, in principle, be adjusted up to ~ 1/4 by appropriate selection of the dc 

supercurrents in L A and L B . If 83S is the coupling between m 3 and the squid 

2 2 + 2 
83 S z [NA (~B/~x)] LT/m3~3(L T L C) ~ L~(Lc+L T) (26) 

where N is the number of turns in LC, A, its area and L C, its inductance. (~B/~x) is 

the average field gradient over A. The limiting case 83S = LT/(Lc+LT ) corresponds to 

100% electromagnetic stiffness. If in addition ~2=t03=~a (unloaded), maximum antenna- 

SQUID coupling is obtained. In such a case, and with A z icm 2, L C > LT, m 3 = 10g and 

~3 = 104' we find (~B/~x)~ l05 gauss/cm, a realisable value. Accordingly, an overall 

coupling of 0.04 seems realistic. 

A particularly simple form of such instrumentation is where a simple structure 

(Figure i0) acts simultaneously as a one turn coil L c and as a light coupled oscillator 

of mass m 3. Matching to a SQUID could require a superconducting transformer having 

just a few turns. 
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\ 

AI. 
P77-'~ Niobium 

Fig.~'9. Dual mode quantum 
limit moving coil 
transducer 

Lx L c Le l T 

Fig. i0. Moving coil sensing and single loop resonator 
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Vl CONCLUSION 

We have considered the sensitivity of a gravitational radiation antenna instru- 

mented with dual mode transducers and Superconducting Quantum Interference Devices. 

Given the availability of low noise SQUIDS, the analysis indicates the possibility of 

achieving with dual mode transducers the ultimate sensitivity the SQUID will permit, 

to effective syst~ noise temperatures close to the quantum limit (~ 10-7K) and corres- 

pondingly high senstivity to short pulses of gravitational radiation. 
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APPENDIX A 

We are interested in the mean value of the quantity 

[(~)2 + (~)2] 2. 

This is obtained after appropriate normalisation from the mean square voltage fluctua- 

tion (Ae) 2 appearing at the input of the SQUID amplifier 

(~n e) 2=T2~oe ~ (~) IT s (~) 12 ITdif (~-~a) 121Tav (~-~a) 12di0 A-I 

where e2(~)n is the noise power density of the noise source considered, Tn(~) is the 

transfer function corresponding to the same noise source. Tdi f and T are the trans- 
av 

fer functions of the differentiating and averaging filters used after phase sensitive 

detection at the frequency ~a" The Nyquist noise power density associated with damp- 

ing R in electrical circuit as in Figure 4 is given by 

2/2-~ e~(~) = 4k B T R. A-2 

Simple expressions for the filters can be used to evaluate A-1 i.e. 

Tdif(~) = I1 - i/~T] -I 

and 

T (~) = [i + i~T] -I. 
av 
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QUANTUM NON-DEMOLITION 

W. G. Unruh 

Department of Physics, University of British Columbia, 
Vancouver, B.C., Canada. 

i. THE QUANTUM LIMIT 

As we have heard from Amaldi and Blair in this surmner school, one must eventu- 

ally worry about the quantum mechanical, rather than the strictly classical response 

of gravity wave detectors to an incoming pulse of gravitational radiation. This situ- 

ation, where quantum effects begin to play a role in gravity wave detection, has come 

to be known as the quantum limit [i]. The purpose of these lectures will be to exam- 

ine this quantum limit, to see in what sense it is actually a limit, and to discuss 

techniques for overcoming this limit to the detection of gravitational radiation. 

To set the scene, let me begin by giving a rather loose derivation of the quantum 

limit. Consider a gravity wave detector idealised as in figure 1 as two masses coupled 

by a spring. In the absence of a gravity 

k wave the equation of motion is given by ® ® 
P -I 

Gravity 
I' Wave 

Fig. i. Model resonant gravity wave 
detector. 

x = L + ~x where ~x is small we have 

where x is the separation between the 

masses, and L the "rest length" of the 

spring. The action of a gravity wave 

polarised parallel to the spring is eff- 

ectively to change the effective length 

of the spring, x, to (1 + h)x. (See app- 

endix A for a detailed treatment of this 

approach to the interaction of a gravity 

wave with an antenna). If we assume 

M~X = -k~x - khL 

The term khL acts as a driving force. Taking h to be a pulse of width T with T ~ M~, 

and amplitude ho, we have 

~x -~ ~x COS(Wt + 6) + IX0h cos(60t +6') 
o o 
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where ~x is the amplitude of oscillation in the absence of the gravity wave,6,~' 
o 

are phase parameters depending on the initial conditions and time of arrival of the 

pulse and ~ is gk/M This gives the energy deposited in a stationary bar as 

E ~ k(~Lh T)2 
O 

~ kL 2(eT)2h 2 . 
o 

If we tune the antenna so that ~T ~i, we have maximum sensitivity and 

E ~ --kL2h 2 ~ ----Mg02L2h 2 . 
o o 

taking ~ ~ 104 rad/sec, M ~ 2 x 103 kg, and L ~ 1 metre as typical values for a bar 

type gravity wave antenna, we have 

E ~ 1011h 2 joules. 
o 

The quantum limit is defined as that strength of gravity wave h which makes this 
o 

energy equal to one quantum, ~. This limit is achieved when we have 

h 2 ~ ~e/kL 2 . 
o 

For the parameters given above this gives h ~ 10 -20 . 
0 

To convert this to a maximum distance to which such an antenna would be respon- 

sive, let us assume that h ~ 1 at a radius of one wavelength from the centre of the 

source [2]. For ~ - 10~/sec, and assuming a I/r fall off for h, we obtain 

or 

h = c/er 
o max 

r ~ c/~h ~ 3.1021km ~ 3.108 light years. 
max o 

Since few sources have an h of unity at the source, the maximum realistic radius 

would be reduced by at least a couple of orders of magnitude. 

One of the more promising sources is the collapse of stars to form black 

holes [3]. Assuming the same rate for this as for supernova [4], one would have to 

be able to detect sources in the Virgo cluster of galaxies in order to expect a rea- 

sonable number of events per year. (Most experimentalists are unwilling to wait a 

lifetime for that one possible event). The distance to the Virgo cluster is greater 
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than the above maximum "one quantum" distance. The question that must be answered 

is whether or not it is possible to detect a gravity wave whose strength is such as 

to deposit less than one quanta in a harmonic oscillator detector initially at rest. 

Before continuing, I should point out that this quantum limit has nothing to do 

with any quantum properties of the gravity wave itself. Taking as a measure of the 

quantum properties of a field the number of quanta per cubic wave length, we find 

this to be [5] 

N/X 3 = c2~2h 2/Gh ~ i030 
0 

for h ~ 10 -2o , far above any quantum limit. It is therefore the extremely small 
o 

cross section of such antenna to gravitational radiation rather than any quantum 

properties of wave itself which force one to be concerned with quantum effects in 

the detector. 

In dealing with such a resonant mass gravity wave detector, there are two poss- 

ible points of view. In the first, one concentrates on the gravity wave itself, the 

oscillator acting simply as a transducer and amplifier of the gravity wave signal. 

Although this is in some sense the more fundamental point of view, it has been very 

profitable to concentrate one's analysis on the oscillator itself and assuming that 

the object of the experimental design is to detect the changes produced in the bar- 

oscillator by the gravity wave. As the danger inherent in this approach is that one 

can forget one's ultimate goal, that of detecting gravitational radiation and not of 

measuring properties of the oscillator, I will try to balance both points of view in 

these lectures. 

Before beginning the description of recent works on the quantum limit in refer- 

ence to gravity wave antenna, I would like to look at the classical papers, espec- 

ially those by Beffner [6] and by Haus and Mullen [7] on the quantum noise limits for 

amplifiers and/or transducers. (There is basically no difference between an amplifier 

and a transducer except that in the latter case the output is of a different form from 

the input). 

The argument advanced by Heffner was an uncertainty principle type argument, 

which suffers from the difficulties inherent in such arguments. He began with the 

uncertainty relation between the phase and quantum number of any linear system 

~n ~¢ ~ l/2 

Strictly speaking no such uncertainty principle exists, and one can show that because 
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of the discrete nature of the number operator spectrum, no conjugate Hermitian phase 

operator exists [8]. However, accepting the above relation, one can define a linear 

amplifier as one in which the output number and phase are related to the input number 

and phase by a relation of the form 

n o = Gni + ~n 

~o = ¢i + ~ ' 

where ~n and ~ are assumed to be additive fluctuations introduced by the amplifier. 

One now measures the output number and phase, and from the known amplification 

factor, G, one deduces information about the input number and phase. The output num- 

ber and phase can only be measured to a certain accuracy Ano and A~o , with AnoA~o _> i/2 

Let us assume that an optimal measurement has somehow been made on the output so as to 

make this an equality. If we assume the output number and phase uncertainties are un- 

correlated with the fluctuations introduced by the amplifier, we can deduce the input 

number and phase with an accuracy given by 

Ani2 = (Ano2 + ~n2)/G 2 

A¢i2 = A~o2 + ~ 2  . 

Now, we must have AniA~i ~ 1/2, or else we will have measured the input to better 

than the quantum limit. Therefore we obtain 

(Ano2 + 6n 2) (A~o2 + ~2)/G2 > 1/4 

or 

(1/4 + Ano26~2 + 6n2/4Ano2 + ~n2~2)/G 2 > 1/4 . 

As the accuracy with which we measure the output number An is within the experiment- 
o 

alist's control, we can minimise the l.h.s, of the inequality by an appropriate choice 

of An O. This gives 

Ano2 = i~n/2~[ • 

We therefore must have 

(1/4 + l~n~I + 16n~i2)/G 2 ~ 1/4 • 
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As I~n~l is greater than 0, the l.h.s, is a monotonic function of ~n6~ . In order 

that this inequality be satisfied, I~n6~I must be greater than the positive root of 

the equation 

x 2 + x + (i - G2)/4 = 0 

i.e. 

~n~ ~ (G - 1)/2 . (I) 

The amplifier must therefore add noise to the signal if the amplification G is greater 

than unity. In his paper, Heffner goes on to derive a minimum noise temperature for 

the amplifier under the hypothesis that the noise is additive Gaussian noise. The 

result he obtains is 

T . = ~w/(kln((2G - I)/(G - i))) . 
mln 

Although suggestive, the above analysis leaves a number of questions unanswered. 

Must the noise be additive noise, and could the noise not manifest itself, at least 

partially, as gain fluctuations rather than additive noise fluctuations? (After all, 

the phase transfer function is essentially just the argument of the complex gain, and 

phase uncertainty could therefore arise from gain fluctuations rather than from addi- 

tive noise). Is the phase-number uncertainty valid for very weak signals where n. ~ I? 
l 

What happens when there are many input channels, and in particular when the gain G 

becomes much less than unity (as happens in a gravity wave antenna where the conver- 

sion efficiency or gain of gravity waves to electrical signal is much less than unity). 

Re-examining eq. (I) in the case G 2 < i, we find that ~n~ = 0 is a perfectly accept- 

able solution. Is it true that a poor transducer can be perfectly noise free? 

To answer these questions, a rather more rigorous analysis of an amplifier must 

be undertaken, and fortunately the job has already been done for us by Hans and Mullen 

[7]. My analysis will essentially follow theirs. 

Let us define ~ and ~ as two fields which are coupled linearly by the amplifier. 

We can define in fields ~. and ~. as the fields which would be present in the absence 
l l 

of the amplifier coupling. Furthermore,~ 0 and ~0 are the free out fields which are 

present at the output from the amplifier. The linearity of the amplifier now implies 

that these out fields are Zine~r functionals of the in fields 

0 = ~0 {~i'@i ) 
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0 = ~o(~i'#i ) " 

For linear fields, we can expand ~. and ~. in terms of the free field normal modes[9]. 
1 1 

Regarding ~ and ~ as quantum operators, the coefficients in the expansion will be 

creation and annihilation operator for these~in modes of the field. 

= * 
~i b~ + b % ~e 

where TI,~ are the free positive frequency modes of the field. Furthermore, the 

out fields, ~o and ~0 can also be expanded in normal modes to give the o~t creation 

and annihilation operators, 

o = al~l + a~ ~ 

o = b~ + b~ ~* 

(I will reserve subscripts ~, 8, 7, ~ for ~ and l, ~, ~, p, for ~ modes) 

The linear relation between the out and in fields implies a linear relation bet- 

ween the out and in creation and annilhilation operators. 

t b t al = M+ll,al, + M_ll, al, + M+le,b~, + M_I~, ~, 

t 
b~ = M+C~, b~, + M_c~,b~, + M+~l,al, + M_@I, al, 

where the M's are constant matrix elements, and the summation convention has been used. 

The above M's are not arbitrary because both the in and out annihilation and cre- 

ation operators must obey appropriate commutation relations [I0]. Defining the 

matrix 

(M+o ~ , ) 

(M+I~,) 
= 

(~,) 

(M*_I~,) 

(M+~I,) (M_~,) (M_~I,) 

(M+II,) (M_I~,) (M_II,) 

(M*_~,) CM~,) (~,) 

(M~ll,) (M*- ,) * +l~ (M+II') 

and the two column vectors 
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(b e ) 

(al) 

A = (b~) 

<a~) 

C5 e) 

(E l) 

(~) 

we can write the linear transformation produced by the amplifier as 

= MA • 

Define the matrix P by 

t P = A A (A At) t, 

where the superscript t means the transpose of the preceeding matrix while maintain- 

The commut- ing the order of the quantum operators in any one of the matrix elements• 

ation relations for the in operators imply 

P {: i}o 
where I is the identity matrix. Defining ~ in the same way from the out operators, 

we have 

From the relation between in and out operators we have 

= P = AA t - (AAt) t = MA AtS t - M(A At)tM t t 
=MP M 

The matrix M must therefore preserve the form of the matrix P (i.e. be unitary with 

respect to P.) 

This analysis is very familiar from S-matrix scattering theory [I0]. The amplifier 

or transducer in this case provides the coupling between the various fields being 

measured and the output measuring fields• The unitarity condition on M is just the 

unitarity condition on the scattering matrix [II]. Furthermore, since we are here 

examining linear interactions, the M matrix coefficients correspond to the Bugoliubov 

coefficients in linear scattering theory. 

In the following I will assume that the ~ field is the one which we are attempt- 

ing to measure, while the ~ field represents a field which we are able to measure 
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readily. (I will not analyse how we measure the ~ field [12]). In particular I 

will assume that we are monitoring onlycertain specific ~-modes which I will desig- 

nate with subscripts ~,~, and that this monitoring consists of measuring the number 

of quanta in these modes. The number operator for particles in any one of these modes 

is given by 

NOW, let the state of the system be designated by Ip> and let IO> be the ~n vac- 

uum state. I0> is thus the state in which initially there are no quanta of any type 

present so that 

a Io> = b IO> = O: V~,~. 

The expectation value of N~ can now be written as 

<pt ~IP> =<P1=~= Ip> *<0t~Io>, 

where :N: indicates that N is normal ordered with respect to the ~n annihilation and 

creation operators. The first term is thus zero when Ip> is the vacuum state. The 

second term, on the other hand, is always present, and thus represents a noise term 

which is independent of the input to the system. This noise term is, furthermore, 

obviously additive. 

Writing ~~ in terms of the ~n operators we obtain 

<OI~lO> = <01(M+~ ~ a~ + M*~+~b t~ + M_~ a I + M*~ b ) 

+ 10> X (M+~ a + M+~b8 + M_~ a~ + M_~sb 8) 

= ~ IM~I 2 * zIM_~l 2 , 
X 

where I have used the summation convention overX, ~, ~, 8 in the second expression. 

To relate this to the gain of the system when there are particles in the input 

modes, let us choose Ip> to bea state with n particles in a particular state ~y,. 

We therefore define p> by 

b~, bT, Ip> = nlp> 

a 7 Ip > = b~Ip>-- o, v~,~ ~¥' 
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The first term, <Pl : N~ :Ip> can now be calculated. We obtain 

: 12 
<Pl : N~ IP> = (IM+~y ' + IM-~y '12)n" 

We can therefore define the amplifying factor for the ~' mode to be converted to a 

mode as 

G~, = IM+~I 2 + b_~,I ~ 

Similarly we find the amplifying factor, G~l,, for the ~l' in mode to be converted to 

a ~ mode as 

G~, = IM+~,I 2 + IM_~,I ~ 

The total amplifying factor G~ can now be defined as 

G~ therefore represents the number of particles in the U out mode if there is one 

particle in every one of the possible in modes. 

However, from the unitarity condition on the M matrix we have 

which gives 

6~~ = (~ M* + EM* ~ 

- (Z M*_~X M_~ + ~MI~ M_O) , 
l 

1 = (~ I M+fi~[ ~ + Z M ~ 2 ) 
1 a' +UC~ 

x 

This gives us a relation between the noise and the gain: 

<0[~ 5 I0> = (G 5 -I)/2 

This is precisely the Heffner result. This derivation, however, makes it clearer what 

the amplifying factor G~ means. It is not the amplifying factor for any one possible 
U 
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input mode, but the sum of the amplifying factors for all possible input modes, inc- 

luding the modes we are measuring at the output. It is also clear that G~ can never 

be less than unity.~ Except in the trivial transducer case, in which C~u is unity and 

the amplifier at best converts one quanta into one quanta of a different type, the 

noise will always be non zero. 

This also suggests the procedure which must be followed to minimise the noise which 

is to make %~ and %1 as small as possible for all e or I modes except the one of int- 

erest. The amplifier should be as insensitive to all other modes as possible. An 

ideal situation, for example, would be to design the amplifier so that 

except for the particular mode 5' one wished to measure, and to have 

and finally to have 

M ~- = 1 , +uu 

with all other components being zero. In general, for gravity wave detection, the 

amplifying factor for gravity wave modes is extremely small (of the order of 10 TM or 

less for the usual bar type detector) givin~ an extremely small limit to the quantum 

noise due to the amplification of the gravity wave. This demonstrates that in princ- 

iple at least the so called quantum limit is in fact not a limit to gravity wave de- 

tection. The quantum limit for the usual detector arises because one has not minimised 

the non essential amplifying factors; one has allowed the bar to amplify not only the 

gravity waves but also other non essential modes. 

In order to present a slightly more physical picture of what is happening, we 

notice that G~ can be greater than unity only if some of the M- matrix elements are 

non zero. These matrix elements represent the transformation of in annihilation oper- 

ators into out creation operators. Since annihilation operators are associated with 

positive frequency modes, while creation operators are associated with negative fre- 

quency modes, the linear transformation from the ~n to the out modes must be time 

dependent. We have 

~o(t,x) = /(M (t,t',x,x') ~i (t',x') 
I 

+ M (t,t',x,x') ~.(t',x'))dt'dx' , 
2 i 
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where the transformation matrices M! and M2 (corresponding to M+~I_ and M±~) must be 

time dependent. The amplifier must therefore supply a time dependent coupling of the 

fields to each other if amplification, rather than simply transduction, is to take 

place. 

This allows us to give a simple picture of the physical cause of the quantum noise 

in any amplifier. Since time dependence in nature is the result of dynamic processes, 

the time dependence introduced by the amplifier must be due to some dynamic variables. 

In treating them as classical functions in the interaction produced by the amplifier 

a) 

Amplifier 
(Pump) 
Quanta 

/ 
/ 

Noise ~~ 

b) 

h 

Amplification 

Fig. 2. symbolic relation between amplification and noise in a 
detector. 
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rather than as quantum operators with quantum fluctuations, these dynamic variables 

must be highly excited, corresponding naively to a system with an extremely large 

number of quanta. Each of these quanta couple to the ~ and T states, and can thus 

decay into a ~ plus a T quanta. This decay has a certain natural rate even in the 

absence of any T or ~ quantum. It is this natural decay of these amplifier quanta 

which gives the additive noise (see figure 2a). In the presence of ~ quanta say, 

this decay process is stimulated, and, the more # quanta present, the more rapidly 

the decay proceeds, emitting T quanta at a rate proportional to the number of ~ quanta 

present (fig. 2b). This is the amplification process. However, as first pointed out 

by Einstein [13], the stimulated rate and the spontaneous rate are directly proportional 

to each other. This is what leads to the intimate relation between the amplification 

and noise of any amplifier. 

The above review of the classical papers therefore leads us to the following con- 

clusions. 

1. The amplifier should be designed to couple only the input modes of interest 

to the relevant output of the amplifier. Any additional couplings will in- 

crease the noise without increasing the sensitivity. 

2. The ultimate quantum limit i8 set by the fact that the amplifier can act as 

a source of gravitational radiation. Because there is no way of telling 

whether the output of the amplifier was due to the reception and amplifica- 

tion of a gravity wave pulse, or due to the decay of one of the amplifier 

quanta into a gravity wave plus an output quanta, this process will produce 

an inescapable noise in the output. However, this source of noise is about 

30 orders of magnitude below the naive 'Quantum limit": and can be disreg- 

arded for the present. 

The problem now arises as to how we can design the detector of gravity waves, or 

more specifically, whether and how we can couple to a harmonic oscillator type gravity 

wave detector in order to minimise the coupling of all extraneous inputs to the det- 

ector to the output (and particularly minimise the coupling of the readout system 

itself to the output of the detector). This will be the problem which I will address 

next. 

Before proceeding with the criterion for the development of a detector which will 

evade the naive quantum limit, it may be instructive to examine a semi-realistic det- 

ector model so as to identify the various rather abstract components which I have 

discussed above. The model is that of a laser interferometric readout of a harmonic 

oscillator type gravity wave detector. I will not analyse this system completely, 

but rather point out the essential features. In appendix B a simple harmonic oscil- 
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lator transducer (with G = I) is analysed in detail. 

Figure 3 gives the essential parts of such a readout system. Any motion of the 

1 

Fig 3. Laser interfero- 
meter readout of 
gravity wave det- 
ector. 

oscillator will alter the phase relation of the beams at the beam splitter, increasing 

or decreasing the number of photons measured at the other side of the beam splitter. 

The system is assumed carefully adjusted so that when the oscillator is in its equil- 

ibrium position, all of the returning photons are transmitted back toward the laser 

by the beam-splitter giving no signal at the output. 

The incoming gravity wave is the field ~ which we wish to measure. The interaction 

with the oscillator is linear (the "force" on the oscillator is just proportional to 

the amplitude of the gravity wave). The interaction of the light wave is via the 

mirror. We can model the mirror by a potential V centred at the position, q, of the 

oscillator. Let us assume that the incident light is in a coherent state ~(t,x), 

where we choose ~(t,x) to solve the electromagnetic field equations with the mirror 

at the equilibrium position of the oscillator. 

Now the electromagnetic field E(t,x) will obey a field equation of the symbolic 

form 

O E = V(x - q) E . 

I assume that ~ obeys 
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DE = v(x)E 

Define the readout field, ~, by 

~= E-E 

which obeys 

O~ -- [V(x-q) - V(x)]E + V(x-q)~ 

If the oscillator is disturbed only very little from its equilibrium position, we 

can linearise the above equation 

D~ = v' (x) q E + v(x)T 

This will hold only so long as the expectation value of T remains much less than the 

magnitude of E, (which requires, for example, that the amplitude of oscillation mus£ 

be much less than a wavelength). However, if this linearisation is valid, then T will 

depend linearly on q which depends linearly on the gravity wave. 

Initially the field ~ will be in its vacuum state. Any motion of the mirror will 

create ~ quanta. At the same time, the radiation pressure proportional to ~T will 

produce a back reaction on the oscillator. The system is designed so that thee signal 

is not transmitted along the readout path to the eye. However, some of the T modes, 

being of a different frequency than the E modes (due to the doppler shift produced by 

the moving mirror) and having different phase relations in the two paths of the split 

beam, will be transmitted to the eye and act as the readout signal. 

This system is far from ideal. A detailed analysis which will be presented else- 

where [14], shows that there is a large noise component due to the coupling of the 

readout field T to the oscillator. Essentially this noise can be regarded as due to 

the light quanta in the split beam exerting random uncorrelated ~-function type forces 

on the two sides of the mirror, and exciting the oscillator, which then produces quanta 

in the ~ readout modes. 

This system acts not only as a transducer, but also as an amplifier, with the 

necessary time dependence being supplied by the classical coherent light source from 

the laser. 

II OPTIMAL QUANTUM DETECTION 

The results of the last section have suggested that for a linear detection scheme, 
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one should design the detector system in such a way that the output to the readout 

system should be independent of the readout system itself. It did not, however, sup- 

ply any suggestions as to how this could be accomplished. 

Let us examine the problem from a different point of view first suggested by 

Hollenhorst [15]. Although he uses the language of quantum decision theory [16] , the 

results of interest can be more easily studied using only ideas from elementary quan- 

tum mechanics. 

The object of his analysis is to describe the limits imposed by quantum mechanics 

on the measurement of the changes produced by a gravity wave on the state of the oscil- 

lator. The gravity wave itself is assumed to be a classical force in that all quantum 

fluctuations of the gravitational field are ignored, as is the possibility that the 

detector could generate gravitational radiation. Furthermore, the oscillator is ass- 

umed to be free of interaction with anything else. 

The oscillator is assumed to be in a known initiated state, li>. In the absence 

of any interactions it will remain in this state. The effect of the classical force 

on the oscillator will be to change this state li> to some different state If>. One 

now wishes to determine either what that final state If> is or to determine whether 

or not any change has taken place. Because these two states, If> and li> , are in 

general non-orthogonal, finding optimal answers to these two possible questions will 

be incompatible. In particular, the optimal techniques for determining whether or 

not some interaction has taken place is given by determining whether the system is 

still in the state li> after the action of the classical force. If one finds it is 

not in the state li>, one knows for certain that something has altered the state, and 

that If> is not identical with li>. However, a determination that the system is still 

in the state li> does not allow the conclusion that If> and li> are identical (i.e. 

that there has been no force acting on the oscillator). In particular, there is a 

probability [17] 

p = {<f{i>{ 2 

that the system will still be found to be in the state li> even if If> and li> differ. 

If P is sufficiently large for some choice of initial state li> and for some ampli- 

tude for the gravity wave, then the probability of detecting that a change has been 

produced in the state of the system becomes small, and that particular gravity wave 

becomes undetectable. 

This false-null probability, P, depends both on the initial state li> of the 

oscillator and on the effect the gravity wave has on the oscillator. For a classical 

force, the effect is easily calculated to be 
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If> = exp (i(~q + 8p/~)) i> , 

where p, q are the canonical momentum and position operators for the oscillator with 

Hamiltonian 

H = (p2 + ~2q2)/2 , 

and ~ and 8 are the cos and sin Fourier components of the force at frequency ~. One 

can readily calculate P for any given initial state li>, 

P = I< i l  exp i (~q + 8p) I i> l  2 

Hollenhorst has calculated this probability for various possible initial states. 

For li> the ground state of the oscillator, one obtains 

_(~2+ 82)/2 ~. 
p =e 
ground 

In order that the change produced by the gravity wave be detectable, P must be small, 

from which we obtain 

~2 + 52 ~ 2 ~. 

The classical energy deposited by the force in a bar initially at rest is given by 

E = (~2 + 82)/2, 
r 

from which we obtain exactly the "quantum limit". 

E > ~. 
r ~ 

Hollenhorst furthermore shows that any coherent state [18] gives precisely the same 

result. 

Since the result depends on the initial state chosen, this result can be changed. 

In particular, he calculates the probability P for the energy eigenstates. He finds 

that P decreases roughly as I/n for any given amplitude (~2+82)½ of the wave where n 

is the number of quanta in the initial state ]i> of the oscillator. Figure 4 is ad- 

apted from Hollenhorst to illustrate the dependence of P on n. There P is plotted 

versus ~2+82 for n=0 and n=10. This illustrates explicitly that there is nothing about 

the quantum nature of the oscillator itself which limits the sensitivity of the det- 

ector. One does, however, have to choose the initial state of the oscillator carefully. 



n-O 

401 

1.0- 

P 

I 2 3 4 5 6 

( cr 2 + B21 /.Q, 

Fig. 4. Probability of non detection vs. signal strength for oscillator in 
ground state and in I0 quantum state for energy detection coupling. 

As a final example, he also calculates P for a set of states he calls wave packet 

states. These are states which have a minimum uncertainty in that ApAq = ½, but in 

which the wave packet is squeezed in one direction and expanded in the other direction 

in comparison with the vacuum state. The simplest such state is obtained by applying 

the operator 

S(c) = exp - [i~(p 2 + ~2q2)/2~] 

to the ground state, 10>, to give the initial state 

l i> = s(o) I0> • 

In this case one finds the condition 

e~2+e-O82~2 " 

For the correct phase of the force (i.e.82 << ~2) this gives a much improved sensit- 
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ivity over the ground state as the initial state. 

Although Hollenhorst's analysis is helpful, it still leaves some questions unans- 

wered. In particular, how does the measuring process itself affect the above analysis; 

how does one determine li>; and how does one determine whether or not the system is 

still in the state li> after a time. Essentially, his analysis leaves out an analysis 

of the readout system on the oscillator, and the effect of this readout on the state 

of the oscillator. 

The readout system must be coupled to the oscillator. The system must be designed 

so that the state of the readout depends on the state of the oscillator. However, the 

quantum nature of the readout system means that the coupling must be sufficiently 

strong so that the different effects on the readout caused by different states of the 

oscillator can be reliably distinguished. (The readout system suffers from the same 

difficulties as the oscillator itself in that weak effects can lead to a high probab- 

ility of no detectable change in the readout state). A strong coupling of the oscil- 

lator to the readout implies a strong reverse coupling as well, implying that the 

state of the oscillator will also depend on the state of the readout system. 

The quantum nature of the measurement process leads therefore to two difficulties. 

The first is that the change produced by the gravity wave may be too small to be det- 

ected reliably, while the second is that the readout system can affect the state of 

the oscillator itself leading to possible noise. 

The Hollenhorst analysis offers a possible way out of this dilenm~a [19]. In par- 

ticular, the optimal strategy according to him is to measure at later times the pro- 

jection operator li><i[. This operator is time indepedent in the Heisenberg repres- 

entation in the absence of any interaction with the gravity wave. Any change in this 

operator must therefore occur because of some outside influence. This suggests that 

the conclusion one should draw is that for optimal detection of the influence of a 

gravity wave on the detector one should "measure" an operator Z which is time indep- 

endent in the absence of a signal, but which changes with the arrival of the signal. 

The term "measure" in the previous sentence must now be interpreted to mean that the 

readout system must be influenced by such an operator Z which is constant in the ab- 

sence of a signal. In the Schroedinger representation, this implies that 

dZ/dt = ~Z/~t - i[Z,HD] = 0, 

where H D is the free Hamiltonian of the oscillator. That the readout system must 

depend on Z can now be interpreted to mean that the full Hamiltonian of the readout 

plus oscillator must have the form 
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H = H + £Z R+ H 
D R 

where H is the free readout Hamiltonian and R is some function of the readout vari- 
R 

ables. But we now find that Z is still a constant in the absence of any further int- 

eractions with the gravity wave. 

dZ/dt = 3Z/~t - i[Z,H] 

= ~Z/~t - i[Z,HD] ei[Z,Z]R 

= 0. 

If Z is chosen as the Hollenhorst type analysis suggests it should be, then Z turns 

out to be independent of the readout system as well. Any changes in Z discovered by 

its affect on the readout must originate from the gravity wave, and not from the read- 

out system. 

We have therefore succeeded in solving both the problem of readout back reaction, 

and quantum sensitivity at one stroke. All we need do is to find some operator Z 

which is time independent in the Heisenberg representation for the free oscillator 

uncoupled to either the gravity wave or the readout system. We must now couple the 

oscillator to the readout system by means of this operator sufficiently strongly that 

the readout system can unambiguously determine the value of Z (i.e. the eigenstate of 

Z which the oscillator is in). This process will not change that eigenstate. One can 

now calculate, a la Hollenhorst, the probability that a given gravity wave will cause 

the system to change its eigenstate. One can then continue measuring Z to see if the 

state has changed or not. 

There are a number of obvious questions raised by the above, namely: do any such 

Z exist which are sufficiently simple that they can be realised for realistic systems; 

can sufficiently strong couplings be obtained to enable one to unambiguously determine 

Z; and finally, what happens if the real system deviates from the ideal scheme out- 

lined above? 

I will examine these questions one at a time. The simplest, time independent 

operator associated with a free harmonic oscillator is the energy of that oscillator. 

Figure 5 gives an example of a readout system, in this case the pivoted bar connect- 

ing the capacitor and inductor, acting as a readout system for an electric L-C circuit 

oscillator. By adjusting the length of the inductor and of the capacitor gap (or 

equivalently the distances from the pivot to the capacitor and the inductor) one can 

make the interaction between the L-C circuit and the bar via the energy in the L-C 

circuit. In particular we have the electromagnetic energy in the circuit as 
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Fig. 5. Quantum non demolition readout of energy of 
electronic circuit coupled to mechanical bar. 

EEM = q2/2C + W2/2L, 

where ~ is the total flux within the inductor, and is the momentum conjugate to the 

charge q on the capacitor. Now both L and C vary inversely as their length and plate 

separation respectively. The pivoted bar is arranged so that L/C is independent of 

the angle, ~, of the bar. We have as the total energy 

q2/2C(~) + ~2/2L(~) + J2/2I, 

where I is the moment of inertia of the bar, J is its angular momentum and ~ its 

angular displacement. Because of the arrangement, we can write 

c(~) = (1 + f(@))-* c(o) 

L(~) = (i + f(~))-i L(o) 

for some f(~) to give us 

H = H D + f(~) H D + j2/2I. 

If, as in the diagram, f(~) is quadratic in ~ (at least for small ~ ) the frequency 

of oscillation of the bar will depend on the square root of the energy of the L-C 

circuit. A sufficiently accurate measurement of the bar's frequency will therefore 

give the free energy of the circuit (i.e. its energy at ~ = 0). 

In principle, by making I sufficiently small, the bar's frequency can be made 

arbitrarily high, allowing an accurate measurement of that frequency to be made in an 

arbitrarily short time. Thus a measurement of the free energy of the oscillator can 
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be made in an arbitrarily short time. 

As we have heard about the Stanford gyroscope experiments here from Lipa [20], I 

would like to comment that the readout system proposal for that experiment is also of 

this kind. The coupling there is to the London magnetic moment induced in a perfect 

superconducting rotating sphere by means of a wire 10op near the equator of the sphere. 

The voltage around the loop is proportional to the changes in the magnetic moment in 

the direction orthogonal to the loop, which correspond to changes in the angular velo- 

city and thus in the angular momentum in that direction. Now the angular momentum is 

an operator of just the required type, namely, in the absence of interactions with the 

readout, or of other external torques, it is a constant. As would be expected, this 

system is most sensitive to external torques when the sphere has high total angular 

momentum but with the component perpendicular to the loop equal tozero. 

A final simple operator associated with a harmonic oscillator which is constant 

in the absence of interactions was first pointed out by Thorne et al [21]. Essentially 

this is the initial position operator for the free oscillator, 

X = q cos ~t - (p/~) sin ~t. 

Because of the free equations of motion for q and p 

= p and ~ = _~2q 

we have dX/dt = 0 as required. This quantity is therefore a suitable candidate for 

an optimally measurable quantity. 

Is it possible to design a readout system to measure this quantity? The answer 

is yes. Borrowing techniques used in audio microphones we can set up a system as 

shown in figure 6. The movable central plate of a three plate capacitor is mechanic- 

-r 

I Fig. 6. Full quantum 
non demolition 

dQ readout on 
mechanical 

d t oscillator 
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ally connected to the oscillator mass, and a time dependent charge Q(t) is placed on 

this plate. One of the other fixed plates is grounded and the other is connected to 

a loop of wire immersed in a non uniform magnetic field (like the coil of a loud- 

speaker). The flux, ~, through the loop will depend on the position x of the oscil- 

lator mass, and will also be assumed to be time dependent. 

The voltage across the fixed capacitor plates is given by 

V = Q(t)(~+x)/A + 2eZ/A , 
P 

where 2£ is the separation of the plates, the movable plate is centered when the osc- 

illator is in equilibrium, and e is the charge on the ungrounded fixed plate. 

Similarly, the voltage V across the coil will be given by 
c 

V = (d/dt) ~(t,x) + Li = ~#0(t)/~t + [~i (t)/~t]x + #~ (t)dx/dt + Ldi/dt 
c 

where ~0 and ~i are the first two terms in the Taylor expansion of ~, the flux through 

the coil, with respect to x, L is the self inductance of the coil which is assumed to 

be independent of x, and i = de/dt. The total voltage across the capacitor and coil 

is therefore 

V = (Q(t)E/A + 2eE/A + ~ /~t + Rde/dt + Ld2e/dt 2) 
0 

+ (Q(t)/A + ~ /~t)x + ~ (t)dx/dt, 
I I 

where R is any stray resistance in the system. 

The equations of motion for the oscillator are 

M/~ = -kx + Q(t)e/A£ - ~ (t)de/dt - # (t)i. 
1 1 

If we define the generalised momentum and coordinate of the oscillator by 

p = /6~ + ~ (t)e//~, 
1 

we find that the equations of motion for the oscillator are derivable from a Hamilton- 

ian (i.e. p really is the conjugate momentum to q) and the voltage across the capaci- 

tor and inductor are 

V = Q(t)~/A + 2e~/A + ~ /~t + Ld2e/dt 2 + Pde/dt 
0 

+ ~ 2(t)e/M + (Q(t)/A + ~ /~t)x + ~ (t)p. 
I I I 
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,Now let us choose 

(t) = (-f(t)/~)sin ~t 
I 

Q(t) = 2f(t)cos ~t - (I/~)(~f/~t)sin ~t 

where f(t) is some conveniently chosen function. The coupling of the readout to the 

oscillator is then solely in terms of the quantity X = q cos ~t - (p/~) sin ~t as re- 

quired. 

These kinds of couplings via variables of the type X have been extensively analysed 

by Thorne et. al. in a recent paper [22]. Any interested reader is referred to that 

paper for further analysis. 

We have therefore answered the question as to whether or not such optimal readout 

techniques can actually be devised for realistic systems. For further comments on 

the theoretical aspects of these systems, called Quantum Non Demolition Readouts 

(QNDR), the reader is referred to a previous paper of mine [23]. 

We are now left with the other two questions, namely what are the effects of other 

external noise sources on the system (e.g. a thermal bath), and what are the effects 

of a less than optimal readout system? 

The coupling of the detector to other external noise fields will have two effects. 

The first is that these fields will in general tend to damp the oscillator and thus 

alter its equations of motion. The mechanism for this is easily understood. The osc- 

illator will act as a source of these fields if it is coupled to them. However, hav- 

ing created these fields, the oscillator will itself be affected by these fields it 

has created. This back reaction of the oscillator on itself alters the equations of 

motion of the oscillator, primarily by introducing a damping term into the equations 

of motion in the case of simple couplings. Secondarily, these external fields will 

exert forces on the oscillator, either because the states of these fields are popul- 

ated, or because their vacuum fluctuations will drive the oscillator. (These vacuum 

fluctuation driving terms are necessary in order to maintain the commutation relations 

for p, q of a damped oscillator [24]. 

Since the oscillator's equations of motion are affected, quantities which were 

constants of the motion for the free oscillator are no longer constants of the motion. 

Furthermore, the driving terms will act as noise, and unless the gravity wave signal 

is much larger than the noise, the signal will be undetectable. There is no way that 

this noise can be eliminated except by weakening the coupling of the detector to the 
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external fields, and by attempting to reduce the population of the states of those 

fields to as small a level as possible (e.g. decrease the temperature of the environ- 

ment of the oscillator). 

In Appendix C I have analysed a harmonic oscillator detector coupled to external 

damping fields which are thermally populated. It is found there that although the 

noise due to these fields does decrease the sensitivity and increase the probability 

of a false detection, the detection level can still be made much less than the "quantum 

limit", as long as the coupling of the detector to the amplifier is sufficiently str- 

ong, and as long as the measuring time is made much less than the damping time of the 

oscillator. 

In the appendix, the coupling of the oscillator to the thermal bath results in a 

damping of the oscillator, and a shift in the resonant frequency. The quantity corres- 

ponding to q cos ~t - (p/~)sin ~t that one must couple to in the case of an undamped 

oscillator becomes 

: q cos ~t - [(p + oq/2)/~] sin ~t 

instead where ~ is the shifted frequency, and G the damping coefficient. Furthermore, 

this quantity is not strictly conserved by the time evolution of the system. Rather 
-Gt 

this quantity is damped as e by the back reaction of the coupling to the thermal 

bath. In addition, the thermal bath acts as a random force on the oscillator, which 

excites X so that its squared uncertainty 

nX2 = <X2> _ <X>2 

in the short term increases linearly with time. Over time periods which are long 

with respect to the damping time, the equilibrium between the damping and the random 

forces due to the thermal bath lead to 

Ax 2 ~ (TI~ + i12)12~. 

The T/~ term is due to the thermal noise, while the 1/2 is due to the vacuum fluctua- 

tions in the thermal bath. 

Over long time periods, the gravity wave must cause changes in X at least as large 

as AX in order to be detectable, which, for T = 0, is just the usual "quantum limit". 

However, for times much less than the damping time, the random thermal and vacuum 

fluctuations do not have a sufficient time to cause large fluctuations in X, leading 

to an improvement in detection level by a factor of (T/tdamping)% where T is the 
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measuring time, and tdamping is the damping time of the oscillator. This result is 

independent of the strength of the coupling of the readout system to X as long as 

that coupling strength is sufficiently large so that for 

I<X>I = [(1/2~)(T/~ + i/2)T/tdamping] ½ 

more than one quantum is generated in the readout system in the measuring time. In 

other words, the coupling must be suffiently strong sothat a minimum detectable 

change in X has a measurable effect on the readout system. 

Although derived in the appendix for a specific model readout system, and a simple 

model thermal bath, the above results are expected to hold in general for any such 

system. 

The final question one can ask is what is the effect of a non-ideal coupling to 

the readout system? Let us write the Hamiltonian for our model system as 

H = H D + eZR + H R . 

The equation of motion for any readout variable T can be given as 

d~/dt = i[HR,T ] + iEZ[R,T ]. 

Neglecting the natural time development of T (i.e. assuming [HR,T ] = 0)we have that 

the change in T in a time 6t is 

ST = £<Z><i[R,T]>~t. 

By a reading of T one can therefore infer a value of Z by 

<Z> = 6T/(c~t<i[R,T]> . 

Now T has an uncertainty AT giving an uncertainty in the inferred value of Z of 

~Z = AT/(£6t<i[R,T]> . 

But we also have the quantum uncertainty relation in the readout system 

AT AR Z <i[R,T]> , 

from which we obtain AZ > (e~R6t) I 
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NOW, the change in a quantity Y associated with the harmonic oscillator due to the 

interaction with the readout is given by 

6 Y  ~ ie<[Z,Y]><R>~t , 

and the uncertainty in Y caused by the uncertainty in <R> is 

bY ~ £ <i[Z,Y]> bR6t 

> <i[Z,Y]>/AZ. 

This gives us bY bZ > <i[Z,Y]> . 

We see that the two uncertainties in Y and in Z have two conceptually different 

causes. The uncertainty, Az, is caused by an insufficiently strong coupling to the 

readout to allow one to read Z any better than AZ due to the quantum uncertainty in 

the readout. This does not mean that the oscillator is in a state with a spread in 

Z values, only that the readout cannot differentiate well enough. On the other hand, 

the bY is that caused by the uncertainty in the back reaction of the readout system 

on the oscillator. These two uncertainties - the readout and the back reaction uncer- 

tainties - are also related by the usual Heisenberg uncertainty relation. In addition, 

for any state of the oscillator, one has the usual exact uncertainty relations as der- 

ived in most textbooks on quantum mechanics. We therefore see how the quantum uncer- 

tainties in the readout system maintain the uncertainty relations of the measured 

system, as was first pointed out by Heisenberg in his microscope gedanken experiment 

[25]. 

The prescription given for an ideal Q.N.D.R. measurement is that Z is to be chosen 

so that dZ/dt is zero in the absence of any interaction with the readout. This implies 

that Z willnot depend on other conjugate variables whose uncertainty is increased by 

the interaction with the readout. There is thus no limit on the accuracy with which 

Z can be measured. If, on the other hand, Z depended on some other variable Y in its 

time development we would have say dZ/dt = ~Y. Now in a time ~t, Y would become un- 

certain because of its interaction with the readout system by an amount 

bY > < [z,Y]>/bRz, 

where bRZ signifies the readout uncertainty of z. We would have this Y uncertainty 

produce an uncertainty in Z of order 

~ z z ~ ~  ~ AY 6 t  > ~ <[z,Y]> 6t/ ARZ. 
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The total uncertainty in Z, which is a combination of the readout uncertainty and 

that due to the uncertainty of Y, cannot be made arbitrarily small. If one couples 

the readout system to the oscillator more strongly to decrease ARZ , one increases the 

uncertainty due to the back reaction. The total uncertainty 

AZ ~ ARZ + AyZ 

ARZ + ~<i[Y,Z]>6t/ARZ 

has a minimum value 

AZ .> (~<[Y,z]> ~t) % 

For example, if we choose Z to be the position variable q, then Y will be the 

momentum p, and i[Y,Z] is unity, giving us 

Aq ~ (6t) ~ . 

Over measuring time of the order of or longer than the period of the oscillator, we 

find, 

which leads to the usual quantum limit that the gravity wave must produce a change in 

amplitude of at least ~-~ to be detectable. 

On the other hand, even if one does not demand exact quantum non demolition readout 

(QNDR), where the quantity readout is a constant of the motion, one can still do much 

better than this quantum limit. An example of such an approximately QNDR quantity is 

the time average of 2q cos ~t . We have 

f2q cos~t dt = f(q cos~t - (p/~)sin ~t) dt. 

By coupling to the time average of 2q cosg~t one should be able to do almost as well as 

by coupling to the constant quantity q cos~t - (p/~) sin~t. This will be true, however, 

only if the readout system does not perturb this time averaged quantity. 

Using Z = 2q cos~t, we have 

d2Z/dt 2 = -~sing~t + ER cos~t. 
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As we are averaging Z over a number of cycles, it is only the low frequency components 

in the above equation which will be of importance. Therefore, we must design the coup- 

ling so that the readout system sees only the time averaged value of Z, and so that the 

oscillator sees no components of the readout system with frequency near ~. 

As an example, let us look at the capacitive readout described earlier as a part 

of an exact system and use it on its own. We must prevent any noise source from driv- 

ing the oscillator near frequency ~. At the same time the output from the readout is 

to be a time average of 2q cos~t. 

- " C L 

i. N VN 

Fig. 7. Time averaged approximate quantum non demolition capacitive readout 
on mechanical oscillator. 

The design is described in figure 7, with a charge 

Q(t) = Qo cosset cOS~ot 

imposed on the center plate of the capacitor system. The voltage across the outside 

capacitor plates is 

V = Q(t) I/A + 2e~/A + Q(t)q//MA 
P 

The Fourier transform of Vp is (for ~> o) 

Vp(~) = (2XQo£/4A) [~(L0-~0o-~) + 6(~0-~o+~) ] + e(c0)~/A 

+ wfd~' [~(~'+~o ) + ~(~ ' -~o) fd t  q( t )  cos~  exp i ( ~ - ~ ' ) t ]  

For ~ near o3 , the last term is proportional to the time average of q cos~t. It is 
o 

therefore only the components of V near ~ which are of interest. The filter must 
p o 
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therefore be designed to let through only these components. 

From the equations of motion for the oscillator, one finds that the time averaged 

value of q cos~t is essentially independent of the components of e(~) near ~ . The 
o 

filter must therefore be designed so as £o ensure that e(w) has components only near 

the frequency ~ in order to minimise the effect of the readout noise on the quantity 
o 

being measured. Following Thorne et al., the possible noise sources, whether due to 

quantum zero point fluctuations, or to thermal effects, are assumed to originate as 

voltage and current sources at the input to the amplifier representing the rest of the 

readout chain. The charge components e(~) are given by 

e(~) = [2Q(~)/c + (Qq) (~)/c + iNR + VN] 

x [iw(R + i/iwC + i/i~ + iwL)] -I 

where C is the capacticance of the two fixed readout capacitors, and (Qq) is the con- 

volution of Q and q. 

Choosing C sufficiently small (<<C) and choosing L = ~o2/C, the charge on the 

capacitor due to the noise terms, i N and VN, will be concentrated at ~= ~0 as required. 

Furthermore, the output voltage at the amplifier due to the motion of the oscillator 

is given by 

V . = [(Qq) (£0)/C] [R + 1/i~C + i/i~ + i~]-l. 
slg 

Because of the peak in the denominator at 0J= ~ , the signal voltage will be proport- 
o 

ional to the time average of q(t) cos~ t as noted above. This system will therefore 

be an acceptable approximation to an optimal readout system, with a minimum detectable 

signal much below the quantum limit. For further analysis of systems of this type, 

see the papers by Thorne et. al. 

Thus we see that although ideal measurement techniques are not that difficult to 

achieve, even approximate techniques can do better than the "quantum limit". 

III CONCLUSION 

The quantum mechanics of gravity wave detectors places restrictions on the methods 

one can use to detect gravity waves. The most naive techniques lead to limits on the 

sensitivity of the detector due to the effect of the readout system on the oscillator. 

However, by choosing the coupling between the readout system and the oscillator app- 

ropriately, the effect of this feedback on the measurement can be eliminated. 

This paper has not discussed the more stringent requirement on a system designed 
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to not only detect the gravity wave but also to predictably infer the form of the 

wave which has caused a given change in a detector (something I have elsewhere called 

Q.N.D.R.). It has not addressed the theoretical problems inherent in designing a 

time dependent coupling. It does, I hope, provide an introduction to a way of think- 

ing necessary to design and analyse detection systems in theregime where the quantum 

properties of the detection system become important. 

APPENDIX A 

I would like to present here an alternative method for looking at the interaction 

of a gravity wave with a solid body from that given for example by Misner, Thorne and 

Wheeler [26]. Although the analysis I will present is not new, [27], it does not seem 

to me to be widely known. 

In the traditional analysis, the effect of the gravity wave on the detector is 

looked at as an effect of a tide producing force. The Riemann tensor of the gravity 

wave acts to produce a force on each particle within the detector which sets it into 

motion. In particular this force is equal to 

F. = - R X j . 
l oioj 

For a detector made of isotropic material with Lame coefficients ~,l the equations of 

motion for a displacement ui from equilibrium are given by 

"" " X Ou i = ~V2u i + (~+~) (u3,j), i -0Roioj i 

(I have used the latin indices to designate the spatial components of any tensor. The 

summation convention is then over index values 1-3 and raising and lowering is done 

via the Euclidian spatial metric). 

There exists another method for the analysis of the interaction. It essentially 

involves working in another coordinate system, the geodesic coordinates rather than 

the isometric coordinates of the above analysis. In particular I choose the coordin- 

ates in Which the gravitational wave has its usual transverse traceless form [28]. 

Defining the gravity wave perturbation by 

we have 

h ~v = gDi'J - ~v ' 

hol ~ = O, 

h.. - V2h.. = 0 , 
13 J-3 
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h i i = hi3'j = 0. 

In this coordinate system, a free particle initially at rest remains at rest even 

during the passage of the gravity wave [29] It is thus an inertial coordinate sys- 

tem in that a particle will move only if acted on by external (non-gravitational) 

forces. 

The effect of the gravity wave is to change the distances between particles. Now 

if the particles are part of a solid body, the interparticle spacing is determined by 

quantum effects (essentially by the competition between the Fermi exclusion principle 

and electromagnetic attractions). If the distances between particles changes, the 

equilibrium is upset and the particles begin to apply forces on each other, causing 

the body to begin to move. It is therefore the response of the body itself to the 

changes in metric caused by the gravity wave rather than any forces of the gravity 

wave on the matter which excites the detector. 

Let us define ui(x) to be the displacement of the particle at x from the point x. 

Using standard elasticity theory, we define the strain within the body as the differ- 

ence in distance between adjacent particles from their equilibrium distance. This 

change will be due to two causes, the presence of the gravity wave, and the relative 

displacements of the particles. The strain tensor E.. becomes 
13 

£ij = (ui, j + uj, i + hij)/2 

By the usual Hook's law assumption, the stress and strain are linearly related. For 

an isotropic material we have [30] 

k ~. . 
O ij = 2~ Ei3 + A E k lj 

There are now two stresses, which I will call ~D and ~G' due to the displacements and 

due to the gravity wave. 

ij = OD ij + ~G ij 

k~. 
GGij = ~hij + A hk lj 

= ~/hij 

The equations of motion for the material in the body is 

P ui = Gi 3'j = ODi 3'j + ~ hi3' j = ODiJ,j . 
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We therefore note that within the body the equations of motion are identical with 

what they would have been in the absence of the gravity wave. The only effect of the 

wave then comes in the boundary conditions at the surface. We have 

~.. n j = 0, 
z3 

where n i is the unit normal to the surface. This gives us 

n j = -~ h..n j . 
D ij 13 

The gravity wave therefore acts like a surface traction on the body. Note that 

it acts only via ~ , the shear modulus of the material. A material unable to sustain 

shears is therefore a poor candidate for a gravity wave detector. 

To link this approach with the tide-producing-force approach, define 

u. = u. - h.. x j 
z z z3 

with the origin of the coordinates somewhere within the body. Furthermore, assume 

that all spatial derivatives of h.. are negligible (i.e. that the wavelength of the 
z3 

wave is much larger than the dimensions of the body). We find 

P ui = ~ v2 ~'z + (~+~) uJ'j'i + p Hij xj 

which is equivalent to eq. A.I. Furthermore, the boundary conditions on 

D ij = ~ (ui,j + ~'3,z ") + ~ uk'k~ij 

are given by 

~Di j nj = 0 

The relation between the two viewpoints is thus simply a change of coordinates. 

It is, however, instructive to note that the usual expression applies only to the 

long wavelength limit. Furthermore, the explicit dependence of the motion of the 

body on only the shear modulus of the material is far from obvious in the usual anal- 

ysis of the interaction. 

APPENDIX B 

In this appendix I will present a simple solvable model of an oscillator type 

gravity wave detector. 
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To make it somewhat realistic, the oscillator will be damped and will be in a 

thermal bath of temperature T. The readout system will be via a coupling to an exter- 

nal field, and will be a time independent linear coupling so that the oscillator will 

serve only to convert gravity wave quanta into readout quanta. This simple model will 

be used to demonstrate explicitly the relation between the Q of the oscillator and the 

signal to noise ratio, and the effect of coupling to the readout system on the signal 

to noise ratio. 

The model will assume that the "gravity wave" is a massless, two dimensional scalar 

field ~(o)" The thermal bath and the fields, #(i)' i>O, which damp the oscillator 

will also be two dimensional scalar fields, as will be the readout field, T. 

The Langrangian action of this model system is given by 

/{¢1/2)~ [~2¢i  ) - ¢ ~ ¢ i ) / ~ x ) 2 1  + [ ~ i ~ ( i ) q  + ~2/2 - a2q2/2 + ~q~l ~¢x) 

[~2 - (~TI~x) 2]I2} dx dt + 
i 

The equations of motion for this system can be solved exactly. In particular, 

the readout field ~ depends on the ~n fields #(i)I and ~I (which obey the two dimen- 

sional massless wave equation exactly). We have 

~(t,x) = ~i(t,x) - (~/2) (q(t-x)@(x) + q(t+x) ~(-x)), 

where q(t) is best expressed in terms of its Fourier transform 

q(~) = /e i~t g(t) dr. 

The equation of motion for q(t) is 

+ (E e(i)z + 82) ~/2 + ~2 q 
i 

= Z ~i $(i) I (t'°) + 8 ~I (t,o) 
i 

which is the equation of a damped harmonic oscillator, with the /~ 

acting as forces on the oscillator. The solution is 

+i~(~ ~ ~(i)i(~,o)+ 8 ~i(~,o)) 
-i q(~) = + 

~2 + i~ (E ~.2 + BL)/2 _ ~2 
1 

i 

and ~ fields 
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Let us now assume that we are observing the ~ field at the point x=0. 

of the Fourier transorm of ~ at this point is then given by 

i8~ (~ ~i ~(i)I(~'°) + 8~I ( ~ ' ° ) ) _ _  -- _ 

~(~) = ~z (~'°)- -~- ~2+ i(Z ~ + 8 2 ) ~12-~ 2 
i I 

The value 

As T(~) depends only on #i(~,o) and ~i(~,o), there is no mixing of positive or negative 

frequencies from the in to the out states. This system therefore acts as a pure trans- 

ducer with no amplification. 

Note that the damping of the oscillator itself arises out of the back reaction of 

the emission of quanta into the various ~(i) fields and the readout field. The net Q 

of the oscillator therefore depends on both the strength of the coupling to the thermal 

bath, the "gravity wave" and to the readout field. For optimal detection one would 

expect that 8 should be sufficiently large that the oscillator decayed predominantly 

via emission into the readout channel, rather than into the thermal bath. 

In order to proceed with this analysis, we need to design a detection strategy. 

Let us assume that one measures the number of particles in some mode of the T field 

at x=0 which averages the output over some time period Y. The number operator will be 

of the form 

N = C%C 

with 

c = f (~12~) % c(~) T(~)d~, 
~>0 

and f I c(~) [2 d~ = 1 
~>o 

where Ic(~)[is a smooth function of width I/T centered at ~0=~ . The normalisation 

factor occurring in the d~finition of C is appropriate for a two dimensional scalar 

field. 

We now wish to calculate the expectation value of N under the assumption that the 

~(i)I states'with i>o are thermally populated with temperature T which gives 

% 

< ~ (i)I (~'°) ~(i)I (~''O) > ~>o = 2~(2T/~2) ~ij ~(~-~')" 

(The extra factor of 2 arises because there are #. modes travelling in both directions). 
1 

The g r a v i t y  wave ,  ~ ( o ) I '  i s  a s s u m e d  t o  c o n s i s t  o f  a p u l s e  w i t h  a b r o a d  f r e q u e n c y  s p e c -  
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trum including the frequency ~ of the oscillator while the readout field is initially 

in the vacuum state. I will further assume that the measuring time T is less than 

the decay time of the oscillator. 

We obtain 

£0>0 (C02-22) 2 +(EC~2+~2) 2 (02/4 
i i  

where we define 

D = i / ~  c(0J) ¢(o)I (~0,o) 03 d(~ 

o C02+i0~ (~.~2+82)/2_22 
1 i 

The integrals will be dominated by the pole near 0>22 . We therefore obtain 

<N> z 2 IBI I%I = Ic¢  1 <¢ o xCe,0) 

=lel'¢i .o %')Icca  l'¢2T/a  
+ t 

4 (i ~" C¢2i + 821 

The first expectation value is just the number quanta in the incoming wave at fre- 

quency ~ , i.e. 

< CT(o)i (2,0) ¢(o)i(2,0) > ~- 2__~ n(2) 
2 

to finally give 

< N > = ( 1 / 2 i ) ~ 8 2 1 c ( 2 ) 1 2  [1~ol  n (2 )  + 

The signal to noise ratio is now given by 

Z C ~ T / ~ ) / C Z ~  + 82)] 
i>o ± i l 

SIN = u02n(2)(Ze 2 + 82)/iZ e.2(T12). 
i >0 i 

We see that the larger [821 is (i.e. the stronger the coupling to the readout), the bet- 

ter is the signal to noise ratio. The essential reason is that the thermal fluctuations 

do not have a chance to build up the amplitude of oscillation before they decay. On 

the other hand, the gravity wave impulse will excite the oscillator by the same amount, 

no matter what the decay time, as long as the pulse is shorter than the decay time or 
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measuring time. 

Thermal noise is not, however, the only uncertainty. If the number <N> is of 

order unity or less, the Poisson fluctuations in the count will introduce uncertainty. 

This limit is given by 

(782/2) I c(~)I 2 ~2 n(~) > l. 
o 

Because of the definition of c(~) we have 

Icc~> 12 ~ • , or ~2~ n(~) k I. 

Thi s  i s  maximised  by l e t t i n g  82T ~ 1. ( I f  82T > 1, t h e  above  d e r i v a t i o n  o f  <N> f a i l s  

and no advantage is gained). The limit ~2 n(~) ~ 1 is essentially the so-called quan- 
o 

tum l i m i t .  

If, for this type of transducer, we optimise 1812 and T for maximum sensitivity 

(i.e. I~]2T~I) , then the thermal noise depends on Ti~ O ~2.i Assuming I%] 2 << I~iI 

(as is certainly true for any known detector), this product is just proportional to 

T/Q where Q is the quality factor of the oscillator in the absence of any readout 

coupling. Furthermore, if 8 is sufficiently large (82 > ~ ~), the thermal noise 

goes as 1/82 . The optimum strategy therefore becomes to make the measuring time app- 

roximately equal to the decay time of the oscillator, to make T/Q as small as possible 

beth by decreasing the temperature and by decreasing the coupling of the oscillator to 

any spurious fields, and to make the coupling of the oscillator to the readout system 

as strong as possible. 

The above are of course well known, but it is reassuring to see these conclusions 

follow from a simple, exactly solvable model. 

APPENDIX C 

This appendix presents a detailed analysis of a model quantum non demolition read- 

out system coupled to a damped harmonic oscillator, which is under the influence of a 

signal field and of thermal noise sources. The system will be mathematically idealised 

so as to make it exactly solvable, but will retain enough features of a realisable 

system to act as a guide to the behaviour of such a system. 

The oscillator is assumed to have momentum and position coordinates p and q which 

are coupled to a set of one-spatial dimensional scalar fields ~.. These fields will 
1 

provide the damping of the oscillator and the source of the thermal noise. Also, one 

of the fields, ~ , will be the signal channel. (i.e. it is signals present in this 
o 



421 

channel which we will want to detect). The "measurements" on the oscillator will be 

made by means of a "readout field" ~. For simplicity I will assume that the ampli- 

tude of T is directly measurable by some means which I will not analyse further. All 

of the ~. fields, the oscillator and the T field will be considered to be fully quantum 
i 

mechanical. 

The measurements on the readout field T will be taken to be measurements (in the 

quantum sense) of the amplitude operators 

Af, T = (1/2) ff(t-T) cos ~o t ~(t,x O) dt 

at some point x > 0. (For mathematical convenience we can take x 
o o 

the positive frequency function h(t) by its Fourier transform 

+ 
= 0. ) Define 

h(~) = (i/2im) (f(~-~) + f(~+~ )) @(m) 
o o 

I will assume that h(t) is norm~lised so that 

-ifh*(t) h(t) dt = 1 

where the dot indicates the time derivative. The operator Af, T is then equal to 

(a'h, T + ah, T) , 

where ah, T is the annihilation operator associated with the mode h(t-T) (i.e. the 

mode h centered at time T). f(t) will be assumed to be a smooth real function of 

width T centered at time t=0, while its Fourier transorm f(~) will have width of 

order i/T centered at ~=0. T will in this case represent the averaging time of the 

measurement which will be assumed to be much longer than the oscillator period, but 

less than the decay time of the oscillator. 

Af, T is thus a measure of the amplitude of the cos~ ° t component of T at time T 

averaged over time T. It is Hermitean and thus a measurable quantity in the quantum 

sense. I will leave the measurement technique unspecified (one has to stop somewhere). 

Because of the coupling of the ~. fields of the oscillator, the presence of thermal 
1 

noise, or of a signal in the ~. fields, will change the oscillator coordinates. Fur- 
1 

thermore, because of the coupling of the ~ field to the oscillator, changes will thus 

be produced in T . The change in the value of Af, T with T will then give a measure 

of the signal (or noise) in the ~i fields. 
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Having described the system to be used, we can now set up the model to show that 

one can in principle set up a quantum non demolition readout (i.e. one in which the 

readout can contribute negligible noise to the measuring process). The full action 

for this system will be given by 

= -~q - {~i~/2 - (82/2) cOS~ot[¢cosfit - osi~t~) ¢d/dt) ¢CO~o~)1 

_ i~ iz o.,i - 8cos%t [cosfit - osi~t/~] o# 

= p - (82/2) cOS~ot [sin~t/5 d(cOS~otX)/dt] - ScoS~Oot [sin~t~ 0#] 

Note that if 8 = 0 (no readout), the equations for p and q are those of a damped har- 
{: o, 

monic oscillator with damping term ~ /2 = 2~ and forcing term -Z ~i i" 

Instead of solving for p, q. it is much simpler to solve for X. We find 

= -~x + Csin~t~)~h~i o~ i o 

Notice that ~, the readout field depends only on the variable X while X depends only 

on the infields o~.. This demonstrates the exact quantum non-demolition nature of 
1 

this interaction. 

It will now be simpler to examine the Fourier transform of the field T at x = 0+C. 

Defining 

we have 

~(0J) = lei~t~ (t, 0+~) dt 

~(~) = oT(~) + (814)(x(~+~o) + x(~_~o)) 

To simplify future discussion, I will assume that if w>0, the term proportional to 

X(~+~ ) can be neglected, while for ~<0, X(60-~ ) may be neglected. (This essentially 
o o 

assumes that the oscillator decouples from the ~. fields at sufficiently high frequen- 
1 

cies). Solving for X we finally have for ~>0 

~(~) = o~(~) + (818)[ (eil~) (il(2(~_~o) + O)) 

x [c~-~o+~) °~ic~-~o+~l - c~-~o-~) o~ ~_~o_~) ] i 

and we find 
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Af, T = fd~0 f*CoJ)e it0T[~(~+~o O) + ?(~0-03o)]/41T 

+ (8/8~)Z ~ifd0~ f*C03)e i~T [C~+~) o~. (~0+~) - (~0-~) °~.(~0-~)]/2~(i0~+o) 
i l i 

The expectation value of Af, T will obviously depend on the initial state of the T field 

which we will assume to be the vacuum state (i.e. no initial ~ particles, at least not 

with frequency near ~o), and on the initial value of the o~.l fields. In particular, 

by making 8 large enough, the effect of the o~. fields on the expectation value of 
1 

Af, T can be made as large as desired. This system therefore definitely acts as an 

amplifier-transducer. 

The important point is to calculate the n~Ise introduced into the measurement of 

Af,  T b o t h  by quantum and by t h e r m a l  e f f e c £ s .  The s i m p l e s t  method  i s  t o  c a l c u l a t e  t h e  

expectation value of (Af,T) 2 in the state in which there are no coherent incoming o~. 
1 

waves, but the o~. states are thermally excited. In a thermal state we have the ex- 
1 

p e c t a t i o n  v a l u e  

< o~.(~)  o~ ; (~ , )  > = [ ( 2 z 6 i  j ~ ( ~ + ~ , ) ) / l ~ t  ] [ T / I ~  I + e ( -~ ) ]  
1 3 

This equation results because for a 1 dimensional wave ~(~)/(2n~) ½ is the annihilation 

operator for the mode of frequency ~. The first term in the above expression is the 

thermal factor where T is the temperature (in units where k = h = I) while the second 

is due to the quantum nature of the fields. Also, because of the real (Hermitean) 

nature of the fields we have 

o~%(~) = o~.(_~). 
1 1 

We also have 

< o~(~) o~ (~ , )>  = [ ( 2 ~ 6 ( ~ + ~ ' ) / l ~ l ]  8(-c0) 

as, by assumption, T is initially in its vacuum state. 

There are now two alternatives. One can measure the amplitude Af, T at one time to 

determine whether or not the measured value differs appreciably from that expected 

from the noise terms alone. The criterion here is that the expected signal must be 

greater than the amplitude expected due to noise alone; i.e. it must be greater than 

< A~,T > ~ where the expectation is that in the state with no signal input. We have 

f,T - J s ~  I~+%1 64~2 i ]2~(~'+o')1~1 " 
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where I have assumed that the width of f(~0) is much less than ~. By the normalisation 

of f (~), the first term is unity. The second term is dominated by the pole at 60=o, 

giving 

< Af ,  T ~  > - 1 + (62 /2 '~ - )~c ,~1f¢0) I  ~ Cl + 2~/~) 

~- 1 + (82/2S~) I f ( o ) I  2 (1 + 2 T / 5 ) .  

On the other hand, one expects the noise at two measurements separated by less 

than the damping to be correlated. This is born out by calculating the expectation 

value of the product of the amplitudes at two times T, T' (chosen so that IT'-T] is 

greater than the averaging time). We find 

< A f ,  T A f , T , >  = (82/25~) I f ( o )  [ 2 ( l +2T /~ )  exp - O IT -T '  1. 

Because of this correlation, it is better to measure the change in the amplitude Af, T 

over a time period shorter than the decay time of the oscillator as we have 

< (Af, T - Af,T,)2 > = 2 + (i - exp -OIT-T' I) (82[f(0)12/2~5)(1 + 2T/~) 

The change in Af caused by the signal is given by 

I< Af ,  T - A f , T , >  I -~ [(13a ° f ( o ) / 8 ) <  O~o (~) + % o ( - ~ > 1  

TO be detectable, this must be greater than the noise, from which we obtain 

~o21 < % ca~ . % (-a~>l 2 > (2'~IBf(o~ 12~ , 4~(T-T'~2T/a o o 

From the normalisation of h(t) we have 

I f (o~ 12 = ~0 • 

where T is the averaging time. We finally have 

¢C'o 2/'~)1< % 0  ¢5) + % o ( - ~ ) > 1  - > (2 ' / I%B '~ I  2) + ( a l T - T ' I / ~ ) ¢ 1  + 2T/5) 

The £.h.s. of this expression is just the change in X caused by the signal. The 

usual "quantum limit" would replace the r.h.s, by (2 ~)-½. By choosing a sufficiently 

large 8, the first term can be made negligible, while the second term can only be de- 

creased by reducing the temperature or reducing the damping constant of the oscillator. 
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The measuring time T-T' must remain longer than the averaging time T or the above 

analysis fails. To get an estimate of how far the present state of the art could 

exceed the "quantum limit", we can choose a frequency of order 1 k hz, a Q of i0 *0 

and a temperature T of .i K. Choosing T-T' (the measuring time) of one second, we 

find that one can just reach the quantum limit sensitivity. Thus some significant 

advances over present technology will need to be achieved to make such a scheme feas- 

ible. 
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I INTRODUCTION 

Since Einstein's formulation of General Relativity in the early part of this cen- 

tury, there has been a tremendous amount of activity in the area of gravitational phy- 

sics. A number of very impressive experiments have been done, and together with astro- 

nomical observations they constitute a foundation for the theoretical framework of a 

large portion of modern cosmology. However, the experimental basis for General Rela- 

tivity is far weaker than that for special relativity, or quantum mechanics. Clearly 

the problem is not one of disinterest, but attests to the enormous difficulty of per- 

forming experiments that go beyond Newtonian gravitation. The order of magnitude of 

General Relativistic corrections to Newtonian gravitation are determined by the dimen- 

sionless parameter GM/c2R, which, for a lm diameter tungsten sphere, is ~ 10 -23, while 

on the surface of the earth it is ~ l0 -9 and for grazing incidence to the sun, 10 -6 . 

This parameter is of order unity only near black holes, which have not yet been unam- 

biguously detected. Until then, we are forced into the realm of measuring extremely 

small quantities, almost inevitably in the presence of an exceedingly large background. 

We begin this paper with a brief review of the experimental situation in post- 

Newtonian gravitation, in order to reexamine the extent to which experiment supports 

or refutes General Relativity, and also to put the experiments which are described in 

the later sections into perspective. These experiments are the most fully-developed 

of the experiments in gravitation that are being conducted at Stanford University: the 

equivalence principle project, the gyroscope experiment, and the search for gravity 

waves. The review follows the lines of a paper by Will [i], and in order to represent 

the theoretical predictions in a manner not restricted to General Relativity, we make 

some use of the PPN formalism [2]. While this limits us somewhat to considering only 

metric theories of gravity, it has the major advantages of treating a large group of 

theories in a uniform way, and of incorporating the weak field limit, where all experi- 

ments are performed. 

II BACKGROUND 

When one contemplates that the original motivation for the General Theory of Rela- 

tivity was the geometrization of gravity, rather than the direct explanation of experi- 

mental data, it is nothing short of amazing that the first three experimental tests 

were in compiete agreement with the predictions. Improved understanding of the nature 
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of the predictions and greater awareness of the experimental difficulties have some- 

what lessened the initial impact of these successes. Even before he proposed General 

Relativity, Einstein [3] realized that the gravitational red shift could be predicted 

from the Equivalence Principle and Special Relativity, without reference to field equ- 

ations; and in 1964 Dicke [4] pointed out that if the mass quadrupole moment of the 

sun were as large as his measur~ents of the solar oblateness indicated, the anomalous 

advance of the perihelion of Mercury would no longer fit Einstein's prediction. At 

this point General Relativity hinged primarily on the bending of starlight results, 

which were at best of low accuracy and in some instances contradictory. It was not 

until a fourth unexpected test was discovered by Shapiro [5] that further progress 

was made, and by now the measurement of the time-delay for radar signals to spacecraft 

passing near the sun has confirmed the General Relativistic prediction to within about 

-+0.5%. While the importance of these and other less precise measurements must not be 

underestimated, it is hard to be satisfied with building such a far-ranging theory as 

General Relativity on one or two measurements of intermediate accuracy. Nevertheless, 

the theory has withstood the test of time and, with no adjustable parameters, has so 

far successfully met all experimental challenges. The recent observation of energy 

loss in the binary pulsar system PSRI913+I6, apparently due to gravitational waves 

[6], is another triumph for General Relativity and is discussed elsewhere in this vol- 

ume. 

A critical review of the experimental basis for General Relativity or some other 

theory of gravity must accomplish at least two things: it must state the requirements 

for the theory as clearly as possible, and it must confront the experimental observa- 

tions with the predictions of various theories, preferably with the help of some uni- 

fied approach. We will make use of the PPN formalism [2], although it is somewhat res- 

trictive - it rejects all non-metric theories as mentioned above, and it is a weak 

field approximation. Since all experiments to date are weak field measurements, this 

latter restriction is in one sense an advantage, but it is possible that it masks basic 

differences between effects that have the same expansion coefficients in the formalism. 

For example, there has been some controversy over the difference between the time-delay 

and deflection of starlight effects due to their equivalent representation in the PPN 

formalism. On the other hand, a~ least one non-metric theory predicts different values 

for the effects [i], indicating that a measurement of the ratio of the effects may probe 

the metric nature of gravitation. 

For a theory of gravity to be viable, it is generally considered necessary for 

it to fulfil the eight criteria listed below [i]. The first four are basically theo- 

retical, while the rest are open to experimental verification: 

1 Space-time is a four-dimensional manifold, with each point in the manifold cor- 

responding to a physical event. 
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2 The equations of gravity and the quantities in them are to be expressed in cova- 

riant form, i.e., independent of coordinates. 

3 The theory must be complete in the sense of analysing from "first principles" the 

outcome of experiments of interest. 

4 It must be self-consistent. 

5 The non, gravitational laws of physics must reduce to those of Special Relativity 

in the limit as gravity is turned off. 

6 In the limit of weak gravitational fields and slow motions it must reproduce New- 

ton's law of gravitation. 

7 It must embody the Weak Equivalence Principle, described below. 

8 It must embody the Universality of Gravitational Redshift (UGR), which states 

that the gravitational red shift between a pair of identical ideal clocks at two 

events in spacetime is independent of their structure and composition. 

This list does not include any requirements for predictions of post-Newtonian effects - 

presumably as the experimental observations are improved they could be added, but at 

present it represents a convenient point for separating the more basic requirements 

from the experimental tests. 

At this stage there is little argument about #5, the first of the criteria direc- 

tly open to experimental verification. A host of experiments have verified the vali- 

dity of Special Relativity in the limit where gravitation effects can be ignored. The 

Hughs-Drever experiment [7], which looks for a violation of Lorentz invariance due to 

preferred frame effects, establishes that deviations are less than 1 part in l013. 

Large bodies of data also sup~rt #6, the Newtonian limit for weak fields. Solar sys- 

tem data gives accuracies of parts in 10 8, and Cavendish type experiments provide wea- 

ker support. However, the Newtonian limit has been questioned at small separations, 

and Long [8] has reported values of (R/G) (dG/dR) as high as (2±0.5) x 10 -3 for sepa- 

rations of the order of i0 cm. It has been suggested that a massive short-range com- 

ponent to the gravitational interaction could be present giving rise to an effective 

variation of G with ~eparation of the test bodies [9]. 

There are a number ofdifferent statements of Equivalence principles. The Weak 

Equivalence Principle (WEP) is simply a statement of the equality of rates of free fall 

that was made familiar to us by Galileo's experiment from the leaning tower of Pisa: 

The world line of a freely falling test body is independent of its structure and com- 

position. This has been verified to very high accuracy by Braginsky and Panov [i0] 

and by Dicke et al [ii], who used torsion balances to compare the accelerations from 

the gravitational field of the sun acting on two masses of different material, with 

that from the centrifugal effect due to the orbital motion of the earth. If we let 

a A and a B be the accelerations of the two masses, then the dimensionaless parameter 

n = 2(aA-aB)/(aA+aB ) , termed the Eotvos ratio, measures the degree of Equivalence brea- 
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king. Braginsky and Panov [i0] obtained ~ <10 -12 for aluminum and platinum. At this 

level the tests go far beyond WEP, because of the significant contributions to the rest 

mass of atoms from the various particle interactions. Haugan and Will [12] estimate 

that the weak interaction contributes a differential amount of about 1 part in i0 I0 

to n for the materials aluminum and platinum, so Braginsky's result can be taken to 

indicate that the weak interaction energy obeys the equivalence principle to about 1%. 

To check the parity non-conserving part of the weak interaction energy, we need to 

determine n to better than 3 parts in 1014 . An extension of WEP, designed to include 

these effects and other possibilities, is the Einstein Equivalence Principle (EEP) 

which states that WEP is valid and any non-gravitational experiment performed in a 

local freely falling frame takes on its familiar special relativistic form. If we 

include gravitational experiments, we obtain the Strong Equivalence Principle (SEP). 

Laboratory Eotvos experiments are unable to test SEP, since the contribution of the 

gravitational self-energy to the rest mass of the test objects is typically less than 

10 -25. On the other hand, for the earth-moon system in the gravitational field of 

the sun, this term is of the order i0 -I0, and laser ranging measurements [13] have 

been able to verify SEP to a precision of a few percent. It is interesting to specu- 

late whether free particles or antimatter obey the Equivalence Principles. It appears 

unlikely that the binding of the constituents of atoms would cause equivalence break- 

ing for the rest mass of the free particles, but experiments have examined this possi- 

bility. The free neutron has been shown [14] to obey WEP to 1 part in 104 , and the 

experimentally more difficult case of the free electron has been examined [15], giving 

agreement to within 10%. This latter project, which is being developed at Stanford, 

is primarily aimed at comparing the force of gravity on free electrons and positrons. 

Morrison and Gold [16] have proposed a scheme in which antimatter is repelled by mat- 

ter, but binding energies are attracted to both, in order to explain the differences 

in the local abundances of matter and antimatter. This scheme appears to invalidate 

Schiff's argument [17] that equivalence breaking in antimatter would have measurable 

effects in Eotvos experiments already performed, through the presence of virtual anti- 

particles in the nucleus [18]. 

The requirement that the gravitational redshift be independent of the nature of 

of the clocks being observed is the least well-tested of the eight criteria. Most ex- 

periments simply measure the redshift, ~9/~, of one type of clock as it is transported 

to regions of different gravitational potential, and compare this with the expected 

shift, ~9/V = gh/c 2. The most accurate experiment to date [19] has confirmed this re- 

lation to about 2 parts in 104 by comparing the frequency emitted by a rocket-borne 

maser with a similar device on the ground. A more direct test of UGR is the compari- 

son of two different types of clocks as they are simultaneously transported through a 

gravitational field. One such experiment [20] compares a maser with a superconducting 

cavity stabilised oscillator as the rotation of the earth carries them in and out of 
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the gravity field of the sun. A relative redshift with a period of a solar day would 

be interpreted as a breaking of UGR if it could be separated from extraneous effects 

at the same frequency. A refinement of the maser experiment has been proposed [21] 

which involves measurements in a satellite in an elliptical orbit about the earth. 

An accuracy of about 5 parts in 106 in the quantity ~/~ is expected. 

We will now consider the status of the experimental tests which go beyond the 

realm of the requirements listed above. These are true post-Newtonian effects, and 

it will be helpful to discuss them from the Point of view of the PPN formalism, which 

is a method for collecting the various theoretical predictions for each effect and 

representing them in parameterised form. Ten parameters are needed in general, but 

if conservation of energy is assumed only five are needed, normally symbolised ~,8,~, 

@i,~2. It must be remembered, however, that this approach is somewhat restrictive 

since the PPN formalism excludes all non-metric theories. 

The most accurately measured effect in post-Newtonian gravitaion is the excess 

time-delay for electromagnetic transmission through the strong gravitational field 

close to the sun. Observations of the round trip travel time for signals to space- 

craft passing near the sun have given an excess time-delay of 250 ± 1 micro-seconds 

for grazing incidence to the solar disc [22]. In the PPN formalism the predictions 

for this effect can be conveniently written in the form 6t = (i/2) (l+y) x 250 micro- 

seconds, leading to a value of ~ = 1 to within 1%. This effect is related to the well, 

known "bending of starlight" effect where the shift 6@ is givenby 6@ = (1/2)(i+~) x 

1.75 arc-seconds for stars passing close to the solar disc. 

Measurements of quasar positions using long base-line interferometry give (1/2) 

(I+>) = 1.00 ± .02. All metric theories clearly give the same ratio for these two 

effects, but some non-metric theories give a different value. 

The well-known anomalous advance of the perihelion of Mercury can be represented 

in PPN language by 

= ((2+2~-~)/3 + 3 x 103 J2 ) x 43 arc-seconds/century 

where J2 is the quadrupole moment of the sun. 

If the sun rotates as an almost solid body, measurements of the shape of the solar 

disc [23] show that the J2 term is negligible, so the observed precession of 43 arc- 

seconds/century indicates that the relation 2y - 8 = 1 is obeyed to within a few per- 

cent. However, Dicke [24] argues that the sun may rotate faster internally, casting 

some doubt on the interpretation of the perihelion advance measurements. 
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The precession of gyroscopes interacting with massive bodies has not yet been 

measured, but it can be treated within the PPN framework. A gyroscope in polar orbit 

about the earth is predicted to precess by an amount ~G = ((I+2~)/3) x 7 arc-seconds/ 

year due to its motion, and by an amount ~M = ((4~+4+~i)/8) x .05 arc-seconds/year due 

to the rotation of the earth. For a polar orbit these effects are orthogonal, allow- 

ing independent measurement. An experiment to measure these effects is described below. 

The successful detection of gravitational radiation may lead to significant new 

tests of theories of gravitation. The properties of the waves and the nature of their 

emission are governed by terms of higher order than those covered by the PPN formalism, 

and we must directly compare the predictions of individual theories with the observa- 

tions. At present it appears that the rate of energy loss from the binary pulsar sys- 

tem is in good agreement with the prediction of General Relativity, and if Confirmed 

this will become another major triumph for the theory. 

III EQUIVALENCE PRINCIPLE TESTS 

The main incentive for establishing even lower limits on the Eotvos ratio ~ is 

to continue the search for violations of EEP resulting from inter~al effects which 

give differing contributions to inertial and gravitational rest mass. For example, 

as mentioned above, we need to resolve D to a few parts in 1014 to check the parity 

non-conserving term in the weak interaction. Beyond this, we have the broader incen- 

tive that is important to extend the range of applicability of the Equivalence Prin- 

ciple as far as we can, since it is a very fundamental aspect of gravitation and can 

help discriminate against various theories. What are the prospects for improvement? 

The experiments of Dicke et al [ii] appear to have been limited by seismic noise. This 

did not affect Braginsky [i0], who seems to have been limited more by readout prob- 

lems. To go much further one probably needs to circumvent both these limitations, 

and after some reflection it is not hard to see that one possibility for a major gain 

is to perform the experiment in earth orbit. Here seismic noise can be avoided (as 

long as the vehicle does not introduce its own disturbances), and the driving acce- 

leration is three orders of magnitude larger due to the use of the gravitational attrac- 

tion of the Earth rather than the Sun. An experiment of this type was proposed by 

Everitt [25] and is currently being developed at Stanford by Everitt and Worden. 

If one considers a space-borne version of the Eotvos torsion experiment, it quic- 

kly becomes clear that while the sensitivity is much higher, gravity gradient torques 

are amplified even more, and severely affect the measurements. The gravity gradient 

torque on a torsion pendulum is given by TGG = (3J21GM/2R 3) sin 2~, where J2,I are the 

quadrupole moment and moment of inertia of the balance, M is the mass of the central 

body, R is the radius of the orbit and 8 is the angle between the torsion arm and the 

radius vector. The "Eotvos', torque due to a possible breaking of the Equivalence Prin- 
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ciple is given by TE~ (IGM/DR 2) ~sin8 where D is the separation of the masses. Thus 

we have TGG/T E ~ J2D/~R which for typical torsion balance dimensions is four orders 

of magnitude larger in earth orbit than for the sun. Reduction of the size of the 

balance helps, but one soon encounters a reduction in readout sensitivity with size, 

since one is basically measuring the twist of a fibre due to T E. The situation is 

actually more complicated, due to the doubly periodic nature of TOG via the sin28 

term, but even if one looks at only those signals a~ orbit frequency, difficulties 

soon arise due to the dynamic range of the readout system. 

The solution to these difficulties that has been adopted by Everitt and Worden 

is to abandon the torsion pendulum and perform a differential measurement of the rate 

of free fall of two concentric test masses as they orbit the earth. If the masses 

were initially started in the same orbit, they would gradually separate linearly with 

time at a rate proportional to ~. However, this "d.c." measurement is difficult to 

make, and the present approach is to give both masses the same initial velocity and 

look for a relative displacement at orbital Period due to the slightly differing eccen- 

tricities of the two orbits. The masses are constrained so that the relative motion 

is confined to one axis to simplify readout. The equivalence-breaking signal is then 

sinusoidal at the orbit frequency, and displacement due to gravity gradient effects 

is at twice orbital frequency. Fig. 1 gives a conceptual view of the experiment. 

DIFFER 
ACCELERATION " ~  ~" 

Fig. i. Concept of the Orbital Equivalence 
Principle Experiment 

By observing the amplitude 

of the gradient effect, it 

is possible to estimate the 

distance separating the cen- 

ters of mass of the two test 

bodies. If this separation 

is driven to zero with a con- 

trol loop, the perturbations 

due to gravity gradients are 

dramatically reduced, allow- 

ing the resolution of the 

experiment to be increased 

to D~I0 -17. At this level 

the experiment is limited by 

imperfections in the construc- 

tion of the test bodies and 

other forces acting upon them. 

The amplitudeof the relative 

motion between the masses is 
o 

approximately IA for ~I0 -17, 

but this is easily detected 
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with readout techniques based on superconducting magnetometry. With typical SQUID 
i 

magnetometers and simple sensing circuity, a resolution of 10 -3 A is easily obtained 

in a 1 Hz bandwidth. A possible readout circuit is shown in Figure 2. It consists 

ill 

MAGNETOMETER 

Fig. 2. Position Readout Circuit 
for One of the Test Masses 

the ends of the mass gives the restoring force, and 

of two coils L 1 and L 2 mounted at 

opposite ends of one of the test 

masses, and a third coil L 3 coup- 

ling to the SQUID magnetometer 

readout system. The circuit is 

completely superconducting and 

initially a persistent current is 

set up to circulate through the 

loop formed by L 1 and L 2. If the 

mass now moves relative to the 

coils, some magnetic flux will be 

transferred from L 1 to L 2, say, 

upsetting the current balance at 

the nodes. A current is then for- 

ced to flow through L 3 to maintain 

the balance, and this is detected 

by the magnetometer. A second simi- 

lar circuit can be set up for the 

other test mass, or a more compli- 

cated circuit may be set up to 

make a direct differential measure- 

ment. The magnetic pressure due 

to the flux in the coils acting on 

by varying the initial current in 

L 1 and L 2 the natural frequency may be adjusted. A second set of auxilliary support 

coils acts on the cylindrical sides of the test bodies to provide axial centering. 

An apparatus incorporating the above concepts is currently being tested in the 

laboratory, primarily to gain operating experience, but also to push earth-bound Equi- 

valence Principle measurements to the limits attainable with superconducting technology. 

It is expected to reach a resoultuion of ~ ~ 10 -13 or l0 -14 with this apparatus. A 

general view of the apparatus is shown in Figure 3. The primary differences between 

the earth experiment and the space version are the use of the sun as the source of 

the gravitational field in the former case, and the need to support the masses against 

the attraction of the earth. The support f~rees are supplied by superconducting mag- 

nets underneath the masses and on earth it is the axial variation of these moderately 

large fields that control the spring constants of the masses, rather than the end for- 

ces from the readout system. So far the apparatus has been operated with one mass, 
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and, by using the earth itself as the second test body, measurements down to a resolu- 

tion of ~ ~10 -5 have been made. 

OUTER TEST M A S S ~  

INNERTESTMASS~ ~ / ' ~ l  
INNER LEVITATION ~ ~  ~ / . / ~  
CRADLE 

SUPPORT MAGNETS 

-k~" I II~ I / 

I1~ el POSITION MONI~ 
NOT SHOWN 

EQUIVALENCE PRINCIPLE ACCELEROMETER 

Fig. 3. Apparatus Used 

for Ground-Based 

Measurements 

IV PRECESSION OF GYROSCOPES 

The idea that a gyroscope in orbit around a massive body would undergo a relativi- 

stic precession due to its orbital motion was first discussed by Fokker [26] in 1921 

following earlier calculations by deSitter and Schouten. Fokker showed that the earth's 

axis has a relativistic precession amounting to 0.019 arc-sec/year due to the curvature 

of space produced by the sun's gravitational field. The motion of a spinning particle 

in General Relativity was investigated more completely by Papapetrou [27], and in 1960 

Schiff [28] showed that a gyroscope in orbit about the earth would undergo a precession 

= (3GM/2c2r3) (r_xv__) + (GI/c22)[3r(S " r)/r 2 - s__] 

where r and v are the coordinate and velocity of the gyroscope and M, I and s are the 

mass, moment of inertia and angular velocity of the central body. The first term, ~G' 

represents the spin-orbit coupling between the gyro and the massive body, commonly 

known as the geodetic precession. The second term, ~, represents the spin-spin coup- 

ling between the gyro and the earth's rotation, and has been called the motional effect. 

The two effects are represented in Figure 4. As mentioned above, in PPN language ~G 

and ~M are given by the General Relativity prediction by (1+27)/3 and (4+4Y+~i)/8, 

respectively. 

An experiment to measure the two effects in an earth-orbiting satellite requires 
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GYRO ORBITING, 
MASS STATIONARY 

3 G M  

PRECESSION 

'O'~RBITA L 
MOTION, 

MASS SPINNING, 
GYRO STATIONARY 

Fig. 4. Gyro Precession Effects in the 
Neighbourhood of a Massive Body 

accurate gyroscopes and a reference 

telescope to define the frame of 

the fixed stars. The goal of the 

Stanford gyro experiment is to con- 

struct a gyroscope with a residual 

drift of less than 10 -3 arc-sec/year, 

which would allow a measurement of 

to almost 1 part in 104 , and ~M 
~G 
to better than 2%. At this level 

the experiment would become by far 

the most stringent test of post-New- 

tonian gravitation, and by measur- 

ing ~M, WOuld be the first to observe 

gravitational effects analogous to 

the magnetic effects of moving char- 

ges in electromagnetism. The techno- 

logical requirements of the experi- 

ment are very demanding, and as most 

aspects have already been discussed in detail in the literature [29,30], we will give 

only a broad overview. The gyroscope consists of a ball 4 cm in diameter made for 

optically-selected fused quartz, coated with a thin film of superconductor. The ball 

is suspended within a spherical quartz housing by electrostatic forces generated by 

servo-controlled voltages applied to three orthogonal pairs of electrodes. It is spun 

up to its operating speed of 200 Hz by helium gas jets and then allowed to run freely 

in an ultra-high vacuum. It is surrounded by a superconducting magnetic shield and 

the location of the spin axis is read out by a magnetic technique. The gyro housing 

is rigidly mounted on the base of a star tracking telescope fabricated entirely from 

quartz, and the whole experimental package is contained within a large helium dewar 

which is kept pointed at the guide star by servo-controlled gas jets. 

The readout system makes use of the small magnetic dipole moment developed by a 

superconductor when it is rotated. This London moment is aligned with the spin axis, 

and changes in its orientation can be detected by sensing the current induced in a super- 

conducting loop placed around the rotor. Figure 5 shows the principle of the readout 

system. The current in the pick-up loop is detected by a SQUID magnetometer which is 

capable of resolving to 10 -3 arc-sec in a 70-hr. integration time. Because of the small 

magnitude of the London moment, elaborate precautions must be taken to control other 

magnetic perturbations which might couple into the readout system. The major source 

of magnetic "noise" is the flux trapped in the rotor when it is first cooled through 

its superconducting transition temperature. Readout linearity considerations dictate 
-7 

that the field trapped in the rotor must be below i0 gauss. Since the thin film 
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MAGNETOMETER 

Fig. 5. Principle of the 
Gyro Readout System 

coating exhibits little Meissner 

effect, a special low field region 

was developed using superconduc- 

ting technology [30]. 

The basic design requirements 

for the gyroscope are shown in 

Table i. The requirements on the 

homogeneity of the rotor material 

is due to the torque generated by 

the residual acceleration of the 

vehicle acting on the small mom- 

ent arm separating the center of 

support and the center of mass. 

For a 500 km orbit the residual 

acceleration due to gas drag on 

the vehicle is of the order 10 -8 

or 10 -9 g. An acceleration of 

this magnitude would set prohibi- 

tive requirements on the homoge- 

neity, so the spacecraft is opera- 

ted in a drag-free mode where it is driven by gas jets to keep in step with a freely 

floating internal reference mass. This technique allows residual accelerations in the 

region of i0 -II to 10 -12 g to be achieved at the reference mass, and somewhat degraded 

levels of the location of the gyros. Probably the most demanding requirement in Table 

1 is the gas pressure specification. Since helium gas jets are used to spin up the 

gyro at low temperatures, cryopumping is not directly available for obtaining low pres- 

sures. Instead we rely on careful temperature cycling of the gyro after spin-up, and 

venting to space. 

TABLE l: DESIGN PARAMETERS FOR 0.3 milli arc sec/YEAR GYROSCOPE 

GYROROTOR HOMOGENEITY - 3 x 10 - 7  

SPHERICITY ~ 0 4/J. in 

OPTIMUM SPIN SPEED ~ I 7 0  Hz 

HOUSING AND SPHERICITY < 2 0  /J. in 
SUSPENSION 

CENTERING ACCURACY ,~. 3 /J. in 

OPTIMUM PRELOAD ~ 2 V  

ENVIRONMENT D R A G - F R E E  PERFORMANCE 

MAGNETIC FIELDS 

RESIDUAL ELECTRIFICATION 
ON BALL 

RESIDUAL GAS PRESSURE 

CHARGE 
VOLTAGE 

i0 - I 0  g 

< 10-7G 

<7 x 10 9 ELECTRONS 
<2V  

10 - 9  TORR 
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The inertial reference telescope is a folded Schmidt-Cassegrain system of 150- 

inch focal length and 5.6 inch aperture. A cross-sectional view of the telescope is 

shown in Figure 6. 

PRIMARY 

  TER*'ARY 

EFFECTIVE FOCAL LENGTH : 150 in. 
PHYSICAL LENGTH : I S i . .  
RADIUS-PRIMARY : 4Gin .  
RADIUS-SECONOARY : 70 .0~0  in. 
RADIUS-TERTIARY : 7.9517 in. 

31 ~in \ 

1'2=1041 

- B E A M  ~ SPLITTER 

I ~=,C::%--.sLIGH T PiPE 

APERTURE : S.Gi . .  

Fig. 6. Star-Tracking Telescope for Inertial Reference 

The light from the star passes through a beam splitter to give two star images, one 

for each readout axis. Each image then falls on the sharp edge of a roof prism, where 

it is split diametrically and passed through light-pipes to a chopper and photodetector 

at ambient satellite temperature. The ultimate sensitivity of the telescope is set 

by the photon noise from the starlight. Rigel, a probable guide star, is sufficiently 

bright to allow resolution to 10 -3 arc-sec in about 15 sec of integration time. The 

use of a stellar reference for the gyroscopes has some difficulties as well as advan- 

tages. On the positive side, it is clearly the only practical method currently avai- 

lable for making an inertial reference system with milli-arc second accuracy, and simul- 

taneously it provides a very useful calibration for the gyro signals via the aberration 

of starlight. This calibration signal is known to better than one part in 104 from 

the spacecraft orbital parameters and exists in the readout data throughout the mission, 

having a period of about once per 90 minutes. On the negative side, the uncertainty 

of the proper motion of stars listed in the Fundamental Catalogue [31] is of the order 

1-2 milli-arc sec/year, giving an absolute limit on the accuracy of the experiment as 

it is now envisaged. In contrast, advances in gyro and readout technology show pro- 
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mise of reaching drift and resolution levels of a few tenths of a milli-arc sec/year. 

The use of VLBI will possibly give some improvement of our knowledge of proper motions 

of radio stars, but it will be some time before this is likely to be transferred to 

stars suitable for the gyro experiment. Another less important difficulty with the 

stellar reference is due to the parallax from the earth's orbital motion. Rigel, for 

example, is listed as having a negative parallax, indicating a faulty measurement. 

Since the distance to Rigel is known to be about 1300 light years, the amplitude of 

the parallax term is approximately 3 milli-arc sec, and if relativity observations are 

made over a full year the term can be extracted from the data. It will appear as a 

small term superimposed on the sinusoidal signal from the aberration of starlight due 

to the orbital motion of the earth, which is 20 arc seconds in amplitude. 

Relativistic effects show up in three other noticeable ways in the gyro experiment. 

For a year-long mission the starlight must pass near the sun during a portion of the 

orbit, and the relativistic deflection has a noticeable effect. For P/gel, the resul- 

tant maximum deflection is 16 milli-arc sec, appearing primarily as a bump in the geo- 

detic data. Another effect is the geodetic precession due to the motion of the gyro- 

scope about the sun. This effect has a magnitude of 18 milli-arc sec/year in the plane 

of the ecliptic and primarily perturbs the measurement of ~. The third perturbation 

is due to the presence of the moon which generates another small geodetic precession 

due to the effective motion of theearth about the earth-moon barycenter with a 28-day 

period. Clearly the data from the experiment will need careful analysis to extract 

the amplitudes of the two primary effects to full accuracy. 

The experiment has progressed to the state where ground-based gyro performance 

and readout have been demonstrated to a level where design of the flight hardware can 

commence. The mission is expected to be flown in the mid-eighties. 

Another technique for measuring % has been proposed [32]. This involves preci- 

sion tracking of two counter-orbiting satellites in polar orbit. Due to the rotation 

of the earth, the orbital plane of each satellite rotates by 0.18 arc-sec/year. By 

using two oppositely rotating satellites, perturbing effects due to irregularities in 

the mass distribution of the earth are cancelled. An accuracy of about 1% in ~ is 

expected for a 2-3 year mission. This experiment is still in the conceptual stage. 

V GRAVITY WAVE PROJECT AT STANFORD 

A number of laboratories throughout the world are currently engaged in the search 

for gravitational radiation. Apart from its enormous intrinsic significance, success- 

ful detection of radiation could lead to new tests of theories of gravitation. Recent 

work has shown that metric theories of gravitation may differ from each other in their 

gravitational radiation predictions in at least three ways [i]: (a) they predict dif- 
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ferent polarization states for the waves, (b) they predict that the speed of the waves 

may differ from that of light, and (c) they predict different multipolarities of the 

gravitational radiation emitted by given sources. Obviously analysis of gravitational 

radiation in these terms will require frequent observations of events, a situation far 

beyond the capabilities of the detectors currently being set up. To achieve such a 

situation it is probably necessary to go s~gnificantly beyond the quantum limit [33] 

of the detectors being used today. This limit is set by our inability to measure both 

phase and amplitude of a mechanical oscillator to arbitrary accuracy due to the Heisen- 

berg uncertainty principle. Special detection schemes have been proposed to avoid 

this problem, basically by measuring only one variable. The current situation is des- 

cribed by W. Unruh in this volume. Devices can be conceived; so far none has been put 

into practice. Another "brute force" solution is to increase the mass of the detec- 

tors, but it requires a special kind of courage to seriously advocate building high 

Q systems with masses much larger than the 5000 kg bars now being used. Alternatively 

one could set up a large array of small detectors and take advantage of the rapid gain 

in sensitivity available with multiple coincidence techniques. 

The ultimate goal of the gravity wave project at Stanford is to operate a 5000 

kg aluminum antenna at sensitivities approaching the limit imposed by the uncertainty 

principle. This limit would correspond to a gravitational wave flux sensitivity of 

about 2 x 10 -6 GPU when a rate of 1 pulse per year is assumed. This senstivity would 

enable the detection of gravity waves at the level predicted to accompany the rare 

gravitational collapse of stars in nearby galaxies, and more frequent less energetic 

events in our own galaxy. In the shorter term the system is being set up to operate 

at about 2 K using a microwave SQUID detector with a very high sensitivity. The expec- 

ted sensitivity of this system is about 2 x l0 -2 GPU. Figure 7 shows the antenna and 

cryostat system, which has already been tested at low temperatures. The suspension 

system for the bar is of the conventional wire support type, but with better than usual 

acoustic filtering. The design of the suspension and isolation system is considerably 

more complicated than would be needed for a room temperature antenna because of the 

need to establish isolation from the exterior of the cryostat while providing adequate 

thermal contact to the liquid helium bath. The suspension load is carried by an exter- 

nal framework supported on four isolation stacks and air mounts. The isolation stacks 

consist of four stages of alternating neoprene rubber pads and steel plates to act as 

a low pass filter. Within the cryostat are two further isolation stacks of five stages 

each, on all four support rods. Finally the rods have acoustic reflection masses at- 

tached to them close to the antenna. These are necessary to reduce the Nyquist force 

noise in the lowest neoprene pad. 
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Fig. 7. The 4800 kg Antenna and Cryostat 

Besides the SQUID magnetometer, the detection system contains a resonant mass 

transducer which is used as a mechanical transformer to increase the amplitude of the 

input signal to the magnetometer [34]. This allows improved noise matching between 

the antenna and detector. A cross-section of the transducer is shown in Figure 8. 

The resonant mass is a superconducting niobium diaphragm clamped between two coils. 

By adjusting the current trapped in the superconducting windings, the spring constant 

can be varied, allowing tuning of the natural frequency of the diaphragm. The read- 

out circuit for the diaphragm position uses the same two coils coupled in parallel to 

the input coil of the magnetometer. The operation of this circuit is identical to 

that shown in Figure 2, except that in the present case the trapped current is of the 

order of 5 amps as compared with a few microamps previously. The analysis of the cou- 

pled resonant mass sytem is straightforward and it is easily shown that the motion of 

the bar of mass M is amplified by the ratio (M/m) ~ where m is the mass of the diaph- 

ragm. The response time of the output signal when the energy in the bar undergoes a 

step increase is given by (3/~o)(M/m) ½ so there exists an optimummass ratio dependent 

on the characteristics of the noise sources and the requirements for pulse arrival 

time resolution. Another factor which depends inversely on the diaphragm mass is the 

coupling coefficient between the bar and the energy in the magnetometer circuit. Put- 

ting this together gives an optimum mass of 1 kg, somewhat larger than is currently 

used. In order to optimise this mass, new techniques for diaphragm fabrication are 
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necessary. 

© 
SQUID 

The X-Band microwave 

Josephson effect magneto- 

meter used to sense the 

transducer output was deve- 

loped at Stanford by R. Gif- 

fard et ai.[35]. With a 

suitable following ampli- 

fier this type of device 

should eventually be capable 

of achieving the ultimate 

sensitivity permitted by 

the uncertainty principle. 

Measurements of the noise 

of the magnetometer itself 

show that at 1 kHz the sen- 

sitivity is about 2 x 10 -30 

J/Hz, a factor of 150 better 

than with commercially avai- 

lable devices. Unfortunately 

the noise of the system is 

dominated by that in the microwave front-end amplifier; steps are being taken to improve 

this situation. With the present system the expected noise temperature is 1.5 mK. The 

antenna system has recently been cooled down to 4 K and is now being prepared for opera- 

tion. 

Vl CONCLUSION 

Even though some doubt has been cast on the value of the perihelion advance and 

the gravitational redshift as precise tests of General Relativity in the past few years, 

many competing theories have been ruled out, and in particular the results from the 

Viking mission significantly reduce the credibility of the Brans-Dicke theory [36]. 

The dimensionless constant ~ in this theory is now forced to exceed 50, compared with 

the originally proposed value of 6 (~ = ~ in General Relativity). The gyro experiment 

described above is capable of putting much tighter limits on this parameter, and to- 

gether with the other experiments in progress will help place gravitational theory on 

a firmer experimental footing. 
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I INTRODUCTION 

In the problem of constructing exact solutions of the stationary axisymmetric 

vacuum gravitational field equations, methods which yield asymptotically flat 

solutions are of particular importance. Only recently have asymptotic flatness 

preserving transformations been identified in the well-known infinite-dimen- 

sional Geroch group [1-3] . However, it is not widely recognised that the Geroch 

group does not exhaust the internal symmetries of the field equations and, 

in fact, a transformation group 2, outside the Geroch group, found some years ago 

by the author, is asymptotic flatness preserving and was used toconstruct the gener- 

alised Tomimatsu-Sato (TS) solutions (Cosgrove [4,5] ) which have a continuous defor- 

mation parameter ~. The greatest potential importance of these solutions lies in 

the fact that, for a certain range of parameters, they are likely to be consistent 

with a rotating perfect fluid source in hydrodynamic equilibrium. The derivation pres- 

ented here is necessarily brief and so, for a more detailed first-principles derivation, 

the reader is referred to Cosgrove [6] and, for a discussion of the generalised TS sol- 

ution, see [4,5,7]. The latter reference containing a partial derivation starting 

from TS "Rule (a)" (Tomimatsu and Sato [8]). 

II THE y FORMULATION OF THE FIELD EQUATIONS 

We take the metric of space-time in the Lewis [9] canonical form, 

ds 2 = e2U(dt _ ~d~) 2 - e-2U{e27(dr2 + dz 2) + r2d~2}, 

and use the well-known result that the vacuum Einstein equation, R34 

grability condition for a potential ~ [10,11] defined by 

4u = e4U~r, ~r = (i/r)e ~z' ~z - (l/r) 

(i) 

= 0, is the inte- 

(2) 

subscripts denoting partial differentiation, e.g., ~r = ~/~r. The vacuum field equa- 

tions can be rewritten in terms of ~, u and ~ and put in the following form: 

• -4Ur. 2 I = 0, V32U + ~e [~r + ~z 2 (3a) 
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V32~ - 41Ur~ r + Uz~zl = 0, (3b) 

2 + e-4U 2 2V32y + (4/r)Tr, (4a) 4Ur ~r = - 

4UrUz + e-4U~r~z = (2/r)Yz' (4b) 

2 + 2V 3 y, (4c) e-4U 2 2 
4Uz ~z = - 

V32 ~ B2/Br2 + B2/Bz2 + (i/r) B/Br. The traditional approach is to seek solutions of 

the coupled pair of equations (3a,b) and then treat y as a derived quantity, easily 

found by quadrature. However, in Cosgrove [12], we choose instead to eliminate u and 

to produce a fourth-order field equation for y alone. This y formulation will pro- 

vide a relatively simple and elegant derivation of the asymptotic flatness preserving 

group ~, which is somewhat more difficult to manage in traditional formulations. 

The derivation of the 7 equation proceeds equally well in arbitrary curvilinear 

co-ordinates (p,T) defined by r = r(p,T), z = z(p,T). Define 

4up2 -4u. 2 + -4u 
A = A[Q,T ] = + e yp , B = B[p,T ] = 4UpU T e ~p~T' (5a,b) 

-4u, 2 = e-2U(up$ T - (5c,d) C = C[p,T ] = 4uT2 + e ~T ' D = D[p,T ] UT~p), 

J = J[p,T] = 4D2 = AC - B 2. (5e) 

The square-bracket subscript denotes the co-ordinate basis and will be omitted when- 

ever no confusion can arise. We see that A, B and C transform as the ii, 12 and 22 

components, respectively, of a second-rank symmetric covariant tensor field which will 

be interpreted as the metric tensor on a 2-dimensional manifold, viz., 

dl 2 = Adp 2 + 2BdpdT + CdT 2 (6a) 

= 4du 2 + e-4Ud~ 2. (6b) 

Each of the quantities, A, B, C, D and J, may be expressed in terms of > alone by means 

of (4a,b,c) and the chain rule for partial differentiation. Thus, 

= [rp 2 2]V327 + 4(rp/r)7 p, A[Q,T ] - 2 + Zp (7a) 
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B[p ,T  ] = - 2 [ r p r  T + zpzT}V32y+2(rp/r )~ 'T + 2 ( r T / r ) y  p, 

2 + z 2]V32 ~ + 4(rT/r)YT, C[p,T ] = - 2 r T T 

(7b) 

(7c) 

and J = 4D 2 = AC - B 2. The task of eliminating u and ~ from (5a,b,c) is made easy by 

recognising that (6b) is the metric on a surface of constant Gaussian curvature, K = 

-i. On calculating the Gaussian curvature K for the metric (6a) and setting K = -i, 

we find 

2J[ATT + Cpp- 2BpT ) - JTAT - JpCp - 4J 2 

BATC Q 2CApB T = - BApC T + + + 2ACTB p - 4BBpB T 0. (8) 

This is the required fourth-order field equation for y expressed in arbitrary curvi- 

linear co-ordinates. 

2u 
The problem of inverting the relations (5) to give e and ~ in terms of ~ is 

quite non-trivial (a fact which seems to enhance the power of the method) but may be 

reduced to a pair of non-coupled linear ordinary differential equations, one often 

trivial. Cosgrove [12] gives three methods, two of which are particularly well adap- 

ted to cases where a certain special co-ordinate system is preferred (as is usual). 

We shall not require the details of these methods here. An important consequence of 
2u 

this analysis is that fttnctions e and ~ corresponding to a given (non-constant) 

are unique up to a reflection (~ ÷ -~) and the SO(2,1) synEaetry group, to be called 

[, of equations (3a,b). This group P is generated by two trivial transformations (~ ÷ 

e 2 u  + const.; + ke 2u, ~ ÷ k~, k constant) and the Ehlers gravitational duality rota- 

tion, given by Ernst [ll] in the form, 

1 + e 2u + i~ (9a,b) ~ = eil~ , where ~ = 2u 
1 - e - i~ 

The parameter % is often called the NUT parameter because of the well-known result 

that the Schwarzschild solution transforms into the Taub-NUT solution. 

III SYMMETRY GROUP OF THE ~ EQUATION 

Let us seek all infinitesimal transformations, 

z" = r + eR(r,z), z" = z + EZ(r,z), ~" = 7 + eP(r,z,y), (lO) 

which preserve the form of the 7 equation (8) with (p,T) = (r,z), to first order in E. 
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It is sufficient, at first, to consider only those terms involving fourth derivatives 

of y. The y equation reads 

where V 2 = ~2/~r2 + ~2/~z2 and the terms omitted form a quartic polynomial in the first, 

second and third derivatives of y. In all calculations of this type where the Lapla- 

cian operator V 2 Occurs, it will be quickly found that R(r,z) and Z(r,z) are conjugate 

harmonic functions: R r = Zz, R z = -Z r, V2R = ?2Z = 0. On replacing r, z and ~ by r ~, 

z ~ and y~ and using (i0), equation (ii) becomes, to first order in e, 

_ 2 2 + 2e r 7 (V27) 2 (l/r2) Yr + Yz - 2Rr) (V27) 2 + V 7 r 7r + 7z 2 

2 

This equation is to be identical to (ii), apart from a multiplicative factor, i.e., if 

72(V27) is eliminated from (ll) and (12), the resulting third-order equation should 

vanish identically. But, according to (ii), ?2(727) is a rational function of the 

first, second and third derivatives of 7 with (V27) 2 _ (i/r 2) [y 2 + 7 2] as denomina- 
~2._2 [ r z ] 

tor. sO a necessary condition that (12) with v (v 7) eliminated should vanish is that 

(V2y) 2 - (i/r2)[7r2 + ys21 be a factor of 

(r 7 - 2R r) (V2y) 2 + V y F%6 Y 7r + 7z + 2(Fray r + Fry7 z) + V 2F 

The conditions for this are 

F = F = 0, F = 0, rR - R = 0, 
r z YY r 

and may be solved to yield 

R = arz + br, Z = ~a(z 2 - r 2) + bz + c, (13) 

and F = my+n, a, b, c, m, n arbitrary constants. When we substitute (i0) now into the 

whole y equation, the parameters a, b, c and n survive independently but we find that 

m = 0, a consequence of the inhomogeneity of the > equation. The parameter n indicates 
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the trivial freedom to add a constant to 7 and so we shall ignore it and take r E 0 

(except in one paragraph of IV below). The meaning of F ~ 0 is not that the function- 

al form of y is left unchanged but is changed in accordance with 

y~(r',z') = y(r,z). (14) 

From the 3-parameter infinitesimal transformation of the co-ordinates given by 

(i0) and (13), a 3-parameter group of finite transformations, to be called ~, can be 

constructed by standard methods [13]. This group is isomorphic to SO(2,1) in its action 
2u 

on r, z and y and commutes with [ (when the effect of ~ on e and ~ is considered, it 

is found that all the parameters of an asymptotically flat solution undergo an S0(2,1) 

transformation law except the NUT parameter [6]). The exact transformation law for 

(r,z) is given by 

(r ~2 + z'2)/2r ~ = 612(r2+z2)/2r + 26162(-z/r) + ~22(2/r), (15a) 

_ z'/r" = 6163(r2+z2)/2r + (6164+6263)('z/r) + 6264(21r), 

2/r" = 632(r2+z2)/2r + 26364(-z/r) +642(2/r), 

(15b) 

(15c) 

61 , 62, 63, 64 constants, 6164-6263 = i. A representation for this group is provided 

by the SL(2) matrix 

, d e t  6- = l ,  
6 = 6s ~4 

6- and -6- giving the same transformation. The actual group element represented by 

will be denoted (Q) 6 and obeays (Q)~(Q)I" (Q)~_~ " The 2-parameter affine subgroup 

of transformations With 63 = 0, 6164 = l, correspond to the infinitesimal transforma- 

tions (13) with a = 0. These are trivial transformations representing a change of the 

unit of length together with a translation up the z axis (r ~ = 612r, z ~ = 612z - 26162), 

but are nevertheless important since they preserve asymptotic flatness. 

However, transformations with 6 3 ~ 0 are highly non-trivial new transformations 

which also preserve asymptotic flatness. We distinguish the important class of one- 

parameter subgroups ~K, ~ real or pure imaginary constant, represented by 

[ cosh 
A = ~(t) = [(2/K) sinh ~Kt cosh ~Kt ] " (16) 

We shall write (Q) 6 -- (QK)t in this case, the latter group elements satisfying 
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(QK) s (Q<) t 
( K = Q )s+t" The corresponding infinitesimal transformation is given by 

, (Q<) e r . (QK) ½e (z 2 2 K2) r = = r + Erz, z = ez = z + - r - , (17) 

to first order in E. Under this transformation, prolate spheroidal co-ordinates (x,y) 

defined by 

r = K(x2-1)%(l-y2) ~ , z = Kxy (18) 

with the same K as in (16) and (17) (oblate if K pure imaginary) obey a somewhat sim- 

pler transformation law. However, the preferred system of co-ordinates involves one, 

~, which is constant along the trajectories of ~K while the other, ~, is constant 

along the orthogonal curves. The co-ordinates in question (~,n) are defined by 

= y/x, n = (x2-1)/(1-Y 2) (19) 

From (15) , (16) , (18) and (19) , the transform of (~,n) under (QK) t is given by 

%)" = (V-~)/(1-8~), n" = n , (20) 

where 8 = tanh %<t. By expressing y as a function of ~ and ~, viz. y = y(~,~), we 

can write the explicit functional form of the ~K transform of 7 in either of the 

equivalent forms, 

>'[(9-~)/(i-8~),n] = ~(~,n), Y'(D,n) = [(~+8)/(1+8~),~]. (21a,b) 

2u 
The transforms of the other metric coefficients, e and ~, under infinitesimal 

elements of0~are expressed in terms of the components of the first of Geroch's vector 

potentials A . However, the transforms of e 2u and ~ under finite elements of ~ involve 
n 

the entire infinite sequence of Geroch potentials A , n = 0,1,2,... , and are rather 

complicated. The attractive feature of the y formulation is that the exact transforms 
2u 

of a given e and ~ can be calculated by first calculating e 2>, then e 2> by means 

of (14) and (15), and then inverting using the methods of [12] to find e 2u', ~" and 

~'. The last step may introduce transcendental functions defined by one or two linear 

ordinary differential equations of the second order. 

AS a simple example, consider the Kerr solution given by Ernst's formula, ~=px-iqy, 

p2+q2 = i, < = mp. An easy calculation gives 

e2Y = (px2+q2y2_l)/p2(x2_y2) = (p2 _q2)/p2(l+D), 
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a function of B only. Thus the functional form of e 2~ ~ is unchanged by (QK)t and the 

transformed solution must be in the Kerr-NUT class with same K and q. By inspecting 
2u 

the infinitesimal transforms of e , W and 4, it can be seen that the transform of 

the Ernst potential under (Q<)t is precisely ~ = ei~(px-iqy) with NUT parameter ~=-Kq/p. 

A detailed examination of the effect of (Q)~ on the Kerr solution and the Weyl solu- 

tions is given in [6]. 

IV SOLUTIONS INVARIANT UNDER,K: GENERALISED TOMIMATSU-SATO SOLUTIONS 

In this section, we shall demonstrate that the generalised TS solutions of [4,5,7] 

(and their P transforms, the TS-NUT solutions) n%~y be derived as solutions which remain 

invariant under ~K, except for a change of NUT parameter. 

If the metric is invariant under~ K, then y" is the same function of ~" and ~" 

as y is of V and ~, where (V',~') = (QK) t(~,n), y" = (QK) ty. Thus, accordin 9 to (21b) 

Y'(~,n) = Y(~,n) = y[(v+8)/(l+8~), n], 

8 = tanh %Kt. This implies 79 = 0 and so 

7 = 7(n), (22) 

a function of ~ only. When the relation Y~ = 0 is expressed in terms of u and ~ in 

spheroidal co-ordinates using (4a,b,c), (18) and (19), we find 

B[x,y ] = 4u U + -4U = x y e ~x~y 0, (23) 

or, in terms of the Ernst pOtential ~ and its complex conjugate ~*, ~x~*y + ~*x~y = 0. 

This equation is actually "Rule (a) " of Tom/matsu and Sato written as a partial dif- 

ferential equation for ~. 

To find the functional form of 7(~), we substitute into the y equation (8) with 

(p,T) = (~,n) or (p,T) = (x,y), the calculation being a little easier in the latter 

case. It turns out that the variables separate and the equation sirmplifies to an 

ordinary differential equation of the fourth order for T(n) which is actually a third- 

order equation for 7"(~), the prime denoting d/dn. Write 

H4(n) = 2n(l + n)7"(~) • (24) 

In terms of H4(n), the 7 equation simplifies to 
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- .4"(.4 - nH4"~ [n2(i+~).4 ' ' '  + n(l+2n).4"" ] 

+ %n2(l+n)H4''2(H4 - 2nH4") + 2H4"2(H4 - rJI-14")2 = 0. (25) 

(l+q)H4''H4 "-2 This equation has an integrating factor 

integral is immediately found to be 

(H 4 _ rlH4. )-2 and so a first 

n2(l+n)2H4 --2 = 4H4"(nH 4" - H4) E 8 2 + H 4 - ( l+n)H4"], (26) 

where 6 is the constant of integration which may be identified with the TS deformation 

parameter by considering the asymptotic form of H 4 for large n. This is the H 4 equa- 

tion of [4]. 

So far, we have carried the derivation beyond the starting point in [7], which 

was TS "Rule (a)" written in the form (23). The construction of the full metric re- 

quires the solution of one other ordinary differential equation of the second order, 

in this case linear and of Fuchsian type. The reader is referred to [4,7] for fur- 

ther details. 

The condition of asymptotic flatness requires that H 4 satisfy the boundary con- 

dition, 

H 4 = 62/p 2 + O(1/q) as ~ ÷ ~ , (27) 

(l-q2) ~, where p = K = mp/6, mass = m, angular momentum = m2q, as in [8]. An effi- 

cient method of solution by infinite series of the H 4 equation (26) subject to (27) 

is given in [4]. There, it is shown that e 2%[ is an analytic function of ~ in the 

whole complex n plane (including n = ~) except for a branch cut from ~ = 0 to ~ = -1. 
' 62e2 ~ When 6 is an integer, (I+Q) is a polynomial in ~ of degree 82 , a closed-form ex- 

pression for which has been given by Yamazaki and Hori [14] and Dale [15]. The general 

solution of (26) gives rise to a 5-parameter class of asymptotically non-flat solu- 

tions. In [4,7], a sixth parameter h was also included in rather an G~ ho~ fashion. 

Here, we shall show that it has a group-theoretic basis also. By exploiting the free- 

dom to add a constant to ~, we can replace (14) by (QK)ty = y-Kht. Invariance now 

demands that 

Y(~,n) = y [ ( v + B ) / ( l + B v ) ,  q ]  - K h t ,  

8 = tanh ½Kt. After differentiating both sides with respect to t, we obtain 
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YV = 2h/(1-V2)' ~ = Y2 (~) + h in~l+V)/(1-V)}, 

B[x,Y] = 4h ( x2_ l ) - l ( l _ y2 ) - l .  

The latter formula is the modification of "Rule (a)" chosen in [7]. 

V CONCLUSION 

It is of considerable interest to determine how many new asymptotically flat solu- 

tions can be generated using 2- Unfortunately, the large class of asymptotically flat 

Weyl solutions are permuted among themselves under 2" All other presently known asymp- 

totically flat solutions are merely reparametrised, but this is actually good as it 

allows the possibility of generalising to new solutions by demanding that they be re- 

parametrised by ~ in a certain way. For example, the observation that the Kerr solu- 

tion is invariant under ~K led to the discovery of the generalised TS solutions which 

have the same property. 

The first asymptotically flat solution outside the generalised TS class was found 

by Kinnersley and Chitre [2], also using group-theoretic techniques. It is a 4-para- 

meter (5 including NUT) solution enlarging the TS ~ = 2 solution and is a good candi- 

date for generalisation to continuous ~. After some tedious algebra, we can express 

the metric coefficient e 2Y in the form, 

+ 2 _ 82)2(i+~)4e2> = Fp2n2 + q2 + ( 2 _ 82)(1+~)2] 2 (p2 

L J 

-4~(l+n)2[pq + 8(I+v2)- 2~V] 2 

I_V2 
(28) 

p, q, ~, 8 constants, p2 + q2 = 1 (reduces to TS ~ = 2 when ~ = 8 = 0). As we have 

come to expect with asymptotically flat solutions, this formula is a somewhat simpler 

rational function than the formula for the Ernst potential ~. A very easy application 

of (21b) shows that (QK)t transforms this solution into another of the same type with 

new parameters, 

q = q, ~ = ~ cosh Kt - 8 sinh <t , 

K" = K, 8" = 8 cosh Kt - ~ sinh Kt . 
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I INTRODUCTION 

Considerable interest has recently arisen in trying to reach a theoretical under- 

standing of the primary source responsible for the energy radiated by some galactic 

[ i] (y-ray bursts, X-ray bursters) and extra-galactic sources [ 2] (extended radio- 

sources, B L Lac, quasars). At the same time a continuous effort is being devoted 

to the detection of gravitational radiation [3-6]. In both cases it is generally 

believed that black holes could play a central role: as primary energy sources and 

as emitters of gravitational waves. In order to explain such energy releases it is 

very important to understand the behaviour of a black hole in a general non- 

equilibrium state. Most of the work, devoted insofar to black holes, has been 

restricted to the study of equilibrium states [ 7] or of small perturbations of 

these [8-10]. 

We wish to report here some results valid for the most general non-equilibrium 

states of black holes [ ii]. We hope that these results will suggest new channels of 

energy release by black holes. The approach that we shall use throughout consists of 

analyzing the evolution of some gravitational and/or electromagnetic [ 12] field 

quantities on the surface of the black hole. This approach is a generalization of 

the ideas put forward by Bekenstein [ 13] (who, using a result of Hawking [ 14], 

interpreted the area S H of a section of the horizon as the entropy of the black hole) 

and by Hanni and Ruffini [ 15] (who introduced the concept of a charge induced on the 

black hole). 

II KINEMATICS OF HORIZONS 

The result [ 14] which we shall take as a basis for our derivations is that the 

surface of a black hole (or "absolute event horizon") is a null hypersurface 

admitting compact sections and generated by non-terminating null geodesics, and, in 

fact, all the equations that we shall write down, but maybe not their interpretation, 

are valid for any such null hypersurface (or "horizon"). 

We denote by ~ the null vector normal to the horizon. In order to normalize 
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and to study the evolution of the black hole we introduce an arbitrary "time" 

coordinate t and two arbitrary "surface" coordinates x A (A = 2,3) on each section 

S (t = const.) of the horizon [ 16]. Then the generators of the horizon (i.e. the 

trajectories of i) can be parametrized by t (i.e. x a = aa(t)) and Z a will be defined 

as dxa/dt. 

In the following we will continuously split the spacetime structure of the horizon 

in time (t) plus space (S). In such a "Newtonian" description the horizon appears as 

a 2-surface S (a "bubble") which moves and changes with time t. We shall consider the 

generators as the trajectories of the "particles" which constitute that "bubble". 

Hence, we can introduce the concept of surface velocity of a black hole as the 

Newtonian velocity of these "particles". 

= dxA(t)/dt . (i) 

Moreover we shall use the well known concepts of the distances induced on each 

section (i.e. a metric ~AB on S) and of the rate of change of these distances as one 

follows the generators (i.e. half the Lie derivative of this metric with respect to 

Z) [ 14]. The latter quantity will be decomposed as usual in its trace @ (the 

expansion) and its trace-free part ~AB (the shear): 

½ D%/AB/dt = ~AB + ½ @ TAB (2) 

where @ ½ yAB = D~AB/dt and where D/dt denotes the Lie (or convective) derivative. 

Here and in the following we profit from the fact that YAB defines a riemannian metric 

on S to introduce its inverse yAB and a surface element of S: 

dS H ~ dx 2 dx ~ = A where 7 = detYAB (3) 

III BLACK HOLES AS VISCOUS FLUID Bi~BLES 

Let us recall the definition of the surface gravity g of a black hole [ 7]: 

IbVb i a Z a = g (4) 

where ?b denotes the covariant derivative. 

Now we introduce a new field quantity ~A by the equation: 

VA £a = _(8~)~Aia + (OA B + ½@ ~A B) ~B xa . (5) 

In the particular case when 8 = G = 0, ~A is proportional to the "gravim~gnetic field" 

of Hajicek [ 17], but we interpret ~A as a surface density of impulsion of the hole. 

This interpretation is justified by the validity of the Navier-Stokes equation below, 
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and by the fact that, in an axisymmetric situation, the integral of the azimuthal 

component of ~A over the surface of the hole is equal to the total angular momentum 

of the hole (discarding the contributions from the matter and fields outside the 

horizon) [7]. 

We shall just state our result that if we start from Einstein equations: 

Rab - ½ R gab = 8~ Tab, (6) 

and if we take a suitable projection of these equations on the horizon we are led to 

a (vectorial) equation which describes the evolution of ~A on the horizon: 

a 

D~A/dt =-~A(g/8~) + 2(1/16~) VBf;A B - (1/16~) ~A e -~ TaA (7) 

where D/dt is a convective derivative and V the covariant derivative associated to YAB. 

It is remarkable that this equation has the form of the Navier-Stokes equation for 

a bubble endowed with shear and bulk viscosities. Therefore we can schematically say 

that the mechanical behaviour of the surface of a black hole is analogous to the 

behaviour of a fluid bubble endowed with a surface shear viscosity of 1/16~, a 

surface bulk viscosity of -i/16~, a surface pressure of g/8~ and acted upon by an 

external force given by the flux of impulsion through the horizon. 

IV BLACK HOLES AS ELECTRICALLY CONDUCTING BUBBLES 

We can use the same approach to study the non-equilibrium electromagnetic 

properties of black holes. We introduce [ 12] the concepts of surface current ~ and 

surface charge density GH as the current and charge distribution which would exist if 

the electromagnetic field was zero inside the horizon: 

K a = (1/4~) F ab %, (8) 

These charge and current distributions complete any external current distribution if 

we ignore the currents inside the hole. This means in particular that we have an 

equation for the conservation of electricity on the hole: 

(i/~) ~(¢~aH)/~t + div ~= J, (9) 

where J is the flux of charge through the horizon. 

Moreover by restraining the electromagnetic two-form to the horizon we get a natural 

definition of the tangential electric field E A and of the normal magnetic induction B 

at the horizon: 
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(% Fah dXaA dxb)H = (E A dx A] Adt + B dS H (i0) 

Using self-explanatory vectorial notations, these fields satisfy both the usual 

Faraday law: 

curl ~ = -(ll/~) ~(/yB)/~t (ll) 

and an Ohm's law: 

+ " ~ x ~ "  = 411" (~ - 0 H ~) (12) 

The simultaneous validity of these laws allows us to say that the surface of a black 

hole is analogous to a bubble endowed with a surface electrical resistivity equal to 

4~ (i.e. 377 ohms) [18]. 

Finally let us remark that the presence of such charge densities and currents on 

the surface of the hole implies the existence of a force (see III) of the usual 

(Lorentz) type. This fact, in connection with the mechanical equation studied in 

part III, seems to offer promise of new channels of energy extraction from black 

holes via electrodynamical effects or induction effects (eddy currents) [12]. 

V THERMODYNAMICS OF BLACK HOLES 

It is very satisfactory to check the consistency of the analogies put forward in 

III and IV with the concept of entropy of a black hole introduced by Bekenstein [13]. 

We can associate to" each surface elemeht dS H of the horizon an entropy: 

ds H = ~ dS H, 

where ~ is a constant (shown by Hawking [19] to be equal to 1/4~A), and, at the same 

time, a temperature 

T = g/8~. 

According to the dynamical equations of III and IV we expect a "heat" dissipation due 

to the viscosities and the resistivity: 

A simple minded expectation for the connection between "heat" and "entropy" would be~ 

Ds~dt = ~t /~r ,  

but, in fact, the equation of Raychauduri [14] yields: 

Ds~dt - (l/g)D2s~dt 2 = ~T. 
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The difference between these two equations can be interpreted (following Dirac's inter- 

pretation of the Lorentz-Dirac equation [20]) by saying that the heat dissipation cre- 

ates an entropy with a pre-increase of the entropy on a characteristic time i/g. 
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ABSTRACT 

The complex vectorial formalism of Debever is used to obtain a new conservation 
equation for electrovac perturbations of charged rotating black holes. It is shown 
how this conservation law and the complex vectorial form of Maxwell's equations may 
be used to give compact derivations of wave equations for such perturbations. 

I INTRODUCTION 

Todate the only really successful treatments of the problem of obtaining master 

equations that govern the behaviour of perturbations of rotating black holes have been 

carried out using the Newman-Penrose (NP) equations [1-6]. In view of the fact that 

the complex vectorial formalism of Cahen, Debever and Defrise [7] effectively includes 

the NP equations but is far more elegant due to its use of exterior differential forms, 

it is worth while asking whether this formalism may be used to give an easier approach 

to the analysis of perturbations of rotating black holes. We show here that this is 

indeed the case, and obtain as an additional benefit a conservation law analogous to 

the Jordan-Ehlers-Sachs conservation law for type D and type II vacuum solutions. 

II THE COMPLEX VECTORIAL FORMALISM 

We prefer to use the most recent formulation of the complex vectorial formalism 

as given by Debever 8 , since this facilitates comparison with the NP formalism. 

However, it should be noted that the most elegant formulation is that due to Bichteler 

[9]. Given a null tetrad ~, n U, m U and mU satisfying 

~ = l, m~ =-i (i) 

with all other scalar products vanishing, Debever introduces the basis 1-forms 

@i = n dx ~, e2 = £dx ~, @3 = _~dx ~, @4 = ~3 (2) 

and the self-dual basis 3-forms 

Z 1 01^@3 Z 2 @4 02, Z 3 l 2 03 04 
= , = = e ^8 - ^ . (3) 

The first equations of structure are written 
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dZ 1 = -2o3^Z1 - 02^Z3 

dZ 2 = 203^z2 + OI^Z3 

dZ 3 = 2Ol^zl - 202^Z2 

where the complex 1-forms 01 , 02 , 03 are effectively the spinor connection, their 

relation to the NP spin coefficients being given by 

O 1 = K01 + T0 2 + 003 + p04 

02 = ~01 + ~0 2 + p0 3 + l04 

03 = e01 + y02 + 803 + ~O 4. 

The second equations of structure, giving the complex curvature 2-forms, are 

(4a) 

(4b) 

(4c) 

(5a) 

(5b) 
(5c) 

E 1 = dO 1 - 203^01 

Z2 = dg2 + 203^02 

Z3 = d03 + O1^O2 

where the Z~ have the decomposition 

+ 1 z = caSz~ K R~a6Z8 + Ea~. 

where R is the Ricci curvature scalar, 

0 % 0 1 7c~ ~ = ° ~ o 
o _  °, 

(6a) 

(6b) 

(6c) 

(7) 

(8) 

and the C~ and E ~ are glven in terms of NP quantities as 

C~8 = 

TO T2 

~2 T4 

~i T3 

~3 ' 

T2 

i0oo 0o 0] 
E ~ = ~20 #22 ~21 " (9) 

~i0 ~12 ~ii 

The Bianchi identities are given by 

dZ 1 = 203^Z 1 - 201^~ 3 (lOa) 

d~ 2 = -203^Z 2 + 202^~ 3 (10b) 

d~ 3 = 02^~ 1 - oi^~ 2. (10c) 

The complete NP equations may be obtained if desired, from equations (3) - (i0) 

if we note that for a 0-form f, 
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df = Df@ 1 + ~f@2 + ~f@3 + ~f@4 

and that the commutators arise from d2f = 0. 

Finally, we note that the source-free Maxwell equations are given by 

dF= 0 (11) 

where 

F = ~0 Z1 + #2 z2 + ~i Z3. 

Also, for an electrovac field 

~ab = ~a~b" 

(12) 

(13) 

III ADDITIONAL NOTATION. WAVE OPERATORS 

It turns out to be extremely convenient for the derivation of wave equations to 

introduce the generalized operator of exterior differentiation O rs defined by 
Pq 

O rs ~ = [d - (p+l)C3^ - (r+l)o3^ 
Pq 

+ q(pO l - ~O 2 + T0 s _ ~O~)^ 

+ s(~O 1 - ~O 2 - 90"  + ~O~)^ ]  n 

(14) 

together with corresponding generalized derivatives 

D rs = D - (p+l)E + qQ - (r+l)£ + sp (15a) 
Pq 

A rs = A + (p+l)~ - q~ + (r+l)~ - s~ (15b) 
Pq 

6 rs = 6 - (p+l)~ + qT + (r+l)~ - s~ (15c) 
Pq 

~rs = ~ + (p+l)~ - q~ - (r+l)~ + s{. (15d) 
Pq 

So far our notation has been general. From this point on we specialize to the 

case where the background geometry is type D (possibly charged) with the tetrad chosen 

so that 

K = ~ = ~ = 9 = 0, 

~0 = ~i = ~3 = ~4 = 0 
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and 

~0 = #2 = 0. 

We introduce generalized wave operators N by means of 
cts 

N cws ~ -2 -i A-I 0 
= 2(s-l) -(s+c) -(l+2s) s-c-i 

_ 6-2 -1 ~-i 0 
2(s-l) -(s+c) -(l+2s) s-c-I- (s-l) (2s-i)~2~ ~" 

For charged type D solutions, N is related to N by 
CtS SiS 

(16) 

(s-c)/2 1 (c-s)/2 ~i ~ . (17) 
Nc,s ~ = ~i Ns,s 

In the uncharged case 

Nc,s ~ = ~2(c-s)/3 ~s,s ~2- f., (s-c)/3 ~) . (18) 

The important point is that N is the natural generalization for charged type 
sns 

D geometries of Teukolsky's spin-weighted operator and is also separable. 

A straightforward calculation shows that the 

*0-~ 0 ,_-i + + - -(l+c) °-i ~(l+c)[Gl zl G2 z2 %Z 3] is 

self-dual part of 

- ZlNc,IG 1 - Z2Nc,,IG 2 - Z3(Nc, 0 + ~2)G3. (19) 

IV THE PERTURBED COMPLEX VECTOI~IAL EQUATIONS 

We use the convention that a subscript A denotes an unperturbed quantity and that 

a subscript B denotes a first order perturbed quantity, and we express the perturbations 

to the background null tetrad as 

and 

= ÷ L2nA" ÷ ÷ 

nB~ = NIZA ~ + N2nA~ + N3mA ~ + N3mA ~ 

mB~ = MI£A ~ + M2nA~ + M3mA~ + M4mA ~. 

(20a) 

(20b) 

(20c) 

Then 
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where, 
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2 1 
@B = -L2@A 

83 1 
B = -L3@A 

@2 3 - 4 
- - _ MI@ A N1 A MISA 

2 M2@3 ~2@2 - N2@A - A - 

- N3@ A - M3@ A - 

The corresponding ~B are given by 

1 = _ (L 1 + Z B 

Z 2 
B = - (N2 + 

3 Z1 - (MI + N3) Z2 - ½(L1 ZB = -(M2 + ~'3 ) A 

-i + (N3 - MI)~2 _ ½(L 1 + (L 3 - M2 ) Z A 

M3)Z1 ½(MI + N3 )Z3 - -1 -2 -3 A A M4ZA + NIZA + ½(MI _ _ _ N3)ZA, 

- Z 2 _ ½(S2 + ~3) Z 3 -i ~2 - -3 
M3) A A + L2ZA - M4 A + ½(M2 - L3)ZA 

+ N 2 + M 3 • M3)Z 3 A 

+ N 2 - S 3 - M3)Z~. 

The complete set of equations for the perturbed quantities is given by 

= Z 3 _ _ O2B^Z 3 dZB 1 -203A^ZB I- a2A^ B 2~3B^ZA 1 

(21a) 

(21b) 

(21c) 

(22a) 

(22b) 

(22c) 

(23a) 

(23b) 

(23c) 

ZIB = d~IB - 2O3A^GIB - 2O3B^~IA (24a) 

Z2B = d~2B + 2O3A^~2B + 2O3B^~2A (24b) 

Z3B = dG3B + ~IA^~2B + OlB^O2A ' (24c) 

dZIB = 2~3A^EIB - 2~IA^Z3B + 2~3B^ZIA - 2OlB^Z3A (25a) 

dZ2B = -2~3A^Z2B + 2~2A^Z3B . 2~3B^~2A + 2~2B^Z3A (25b) 

dZ3B = ~2A^ZIB - ~IA^~2B + G2B^ZIA - OlB^Z2A (25c) 

dF B = 0, (26) 

FB = ~ Z 1 + 2 Z 3 OB A ~2BZA + ~IB A + ~ Z3 (27) IA B " 

V A CONSERVATION EQUATION FOR ELECTROVAC PERTURBATIONS 

Our starting point is the observation that Maxwell's equation (26) for electrovac 

perturbations is already in the form of a conservation law. Second, the existence of 

the conservation law 

d[,,,2/3 3] 
[T2A ZA = 0 (28) 
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for uncharged type D geometries, due to Jordan, Ehlers and Sachs [i0] in their important 

1961 paper, gives motivation for the search for an equation of the form dG = 0, where 

G is i 2-form involving the first order perturbed gravitational quantities. In fact, 

such an equation does exist. Explicitly in the Kerr-Newman case it is 

In the case of Kerr background geometry the appropriate equation is 

+0- d 3 Z3 B + ½ 2A B 

The essential point is to notice that by adding ~C12 A 

(25c) we obtain 

dZ3B + ~CI2AdZ3 

= O2 ^[~.lB - Cl2AZ 2)B - OIA^I~2B - Cl2A~l) 

After some straightforward manipulation we find that this reduces to 

- - ~AOA + TA A - A A 

For the case of the Kerr-Newman solution 

so 

IA IAtPA A - ~A A - + = " 

(29) 

(30) 

times equation (23c) to equation 

(3l) 

Consequently 
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+ - #½- 

since dF B = dF B = 0. On collecting terms we find that we have the stated result. 

The corresponding uncharged result follows quite straightforwardly. 

VI GAUGE AND TETRAD FREEDOM 

We still have at our disposal the 6-parameter group of infinitesimal tetrad 

rotations and the 4-parameter group of infinitesimal coordinate transformations (gauge 

freedom). We write the infinitesimal coordinate transformation as 

x "]/ = x ]/ + ~]/ (32) 

where 

(33) 

The effect of the infinitesimal tetrad rotation may be written as 

and 

~B ~ = ~B ~ - AZA~ + bmA~ + b~A~ 

%1"I = + AnA~ - + amA~ nB~ + amA~ - 

~ = mB~ + a~A~ + bnA~ .+ iSmA~ 

(34a) 

(34b) 

(34c) 

where A, 8, a and b are first order quantities. 

The transformed ~B are given in a type D background by 

and 

. 0 1 [A -3 
Z 1 -1 1 [Z@ A X831 + ZB1 B 0-3 = + - - _ aZ A 

+ Z 1 A I(PX - ~Y + ~Z - ~) + 2(~X + yY + ~Z + ~)] 

i 0,, IA 
ZB 2 = B Ol 1 [Y~A " - - 

+ z 2 [px - ~Y + ~z - ~z - 2(~x + 7Y + 8z + a~)] 

ZB3 = ZB O-1 2 • A 

+ 2Z3(px - ~Y + TZ - ~.) - 2bZA 1 - 2aZ 2 . 

(35a) 

(35b) 

(35c) 

VII MASTER PERTURBATION EQUATIONS 

(a) ELECTROMAGNETIC PERTURBATIONS OF AN UNCHARGED ROTATING BLACK HOLE 

In order to illustrate the method of deriving wave equations for the perturbed 

quantities, let us first consider the problem of electromagnetic perturbations of an 
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uncharged rotating black hole. Since ~IA = 0, equation (26) becomes 

-i 0f~ z 1 
0_i 0,~0B A + ~2BZA2 + ~IBZA 3) = 0. 

02* and using equation (19) we find that the Operating on this equation with *O_i - 

self-dual contribution to the left hand side is 

i N 3 
-z~NI,÷I%B - ZA I,-I%B - ZA(N1,0 + ~2A)~IB ' 

and so we obtain the results 

NI,I~0B = 0, (36a) 

(~/-2/3 
N-l,-it 2A ~2B ) = 0 (36b) 

f~ . i /3  
and (N0,0 + ~2A ) "  2A ~IB ) : 0. (36C) 

Equations (36a) and (36b) are recognized as Teukolsky's equations, and equation 

(36c) was first encountered by Fackerell and Ipser [ii]. 

(b) ELECTROMAGNETIC PERTURBATIONS OF A CHARGED ROTATING BLACK HOLE 

We now show that with a suitable choice of tetrad and gauge freedom the equations 

for electrovac perturbations of a charged rotating black hole take precisely the same 

form as equations (36a) - (36c). 

On applying the infinitesimal coordinate transformations and tetrad rotations we 

find that equation (26) may be written 

-i O, , Z I ., 2 ~, ZA 3) -i 0 ,3 
O-i 0[~0B A + $2BZA + IB : -0-i 0(~IAZB )" 

I f we operate on this equation with * -i 02, O_i _ , we find that the self-dual part of the 

left hand side is 

Z I - .  - 3 ½ -% . 
- - - + 

• 

The self-dual part of the right hand side is given by the self-dual part of 

. -i C£ .0-i 0 Z 3 plus 
- 0-i -2 --i 0 B 

1 
-ZANl , l ( 2~ l~ )  - ~'2~IANA -1 , -1  (2a) 

- Z 3"-% (N + ; ,%;L ,  o , o  + ' ~ 2 A ) [ ' ~ A  ( °~  - ~Y -~z - ".~.)1. 
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Since b and a are arbitrary complex numbers we can always choose b and a to make the 

terms in Z 1 and Z 2 A A on the right hand side vanish. In the case of /"otatiz~ charged 

black holes the combination pX-~y+TZ-~, may also be made equal to an arbitrary complex 

number, since in this case the complex conjugate of 

X - ~ Y + T-- z - ~ 0  0 Z 

is 

x - ~  - ~  

=x-~Y-p {~z- ~-~.I~ x ~Y+!z- E. 
o o 

Thus for a charged rotating black hole, the gauge and tetrad freedom may be chosen so 

that the electromagnetic perturbation equations are, on dropping primes, 

I~OBI = O, (37a) N 1 F1 

N (~-i~) = o (37b) 
-1,-i 1A 2B 

and (No, 0 + ~2A ) (~IA~IB) = 0. (37c) 

Equations (37a) and (37b) were first given by Crossman [12]. 

(c) GRAVITATIONAL PERTURBATIONS OF A KERR BLACK HOLE 

We now show that by making essentially the same choice of gauge we can obtain 

TIB' 
similar master equations for the quantities T3B and T2B" We start from equation 

(30) written in the form 

-i 0~-i/3 Z 1 3)I 3 -i 0 2/3 3~ 
°-i 0 2A (~IB A + ~3Bz~ + ~2B z = - ~ °-i o(~2A ~AJ" 

On operating on this equation with * -i 02, O_l _ we find that the self-dual part of the 

left hand side is 

Z 2 2/3 {,,-i _3,,,i/3 -2/3 

For rotating black holes the gauge and tetrad may be chosen so that the self-dual part 

of the right hand side vanishes. Thus we obtain 
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-1/3 
NI,I(~2A ~IB ) = 0, (38a) 

N ( ~ - 1 ~ )  = o (38b) 
- 1 , - 1  2A 313 

and ( % , 0  + ~'~)[,~-2/3,~2;, 2~) -- a (38c) 

These results were first indicated by Crossman [12]. In a forthcoming paper we 

show how the conservation equations (29) and (30) may be used to derive Debye potential 

representations for the perturbed quantities. 

REFERENCES 

1 Teukolsky, S.A., A~oph. J.~ 185, 635, (1973). 
2 Teukolsky, S.A. and Press, W.H., Astroph. J., 185, 649, (1973). 
3 Teukolsky, S.A. and Press, W.H., Ast~oph. J., 193, 443, (1973). 
4 Chandrasekhar, S., P~oo. Roy. Soc. London A., 358, 421, (1978). 
5 Chandrasekhar, S., ~oc. Roy. Soc. London A., 35__~8, 441, (1978). 
6 Chandrasekhar, S., Proc. Roy. Soc., in press (1979). 
7 Cahen, M., Debever, R. and Defrise, L., J. Math. Mech., 16, 761-785, (1967). 
8 Debever, R., Bull. C1. Sci. Acad. Roy. Belg., 60, 998, (1974).. 
9 Bichteler, K., Z. Phys~k, 178, 488, (1964). 
i0 Jordan, P., Ehlers, J. and Sachs, R.K., Akad. Wi88. Lit. Mainz Abh. Math.-Nat. 

k£., i, 3, (1961). 
ii Facker--ell, E.D. and Ipser, J.R., Phys. ReU., D 5, 2455, (1972). 
12 Crossman, R.G., L~tt. Math. Phys., l, 105, (1976). 



SYMMETRIES AND EXACT SOLUTIONS OF EINSTEIN'S EQUATIONS 

C.B.G. McIntosh 

Department of Mathematics, Monash University 
Clayton, Victoria 3168, Australia 

INTRODUCTION 

Einstein's field equations of General Relativity, 

~ - %gp R = 81Vgp~ (i) 

are ten coupled partial differential equations for the unknown components, g~, of 

the metric tensor and are so complicated that it is very hard to find exact solutions. 

This is of course true even in vacuum where the components, T ~, of the stress-energy- 

momentum vanish and the field equations reduce to 

R = 0. (2) 

Exact solutions for, say, different forms of T and different forms of boundary con, 

ditions can only be found in general when a number of assumptions have been made about 

the form of the metric tensor. 

Perhaps the most co~aon assumption made by people looking for exact solutions is 

that the metric admits a Killing vector field or isometry, Z, i.e. [ satisfies Kill- 

ing's equations 

LV g~ = 0. (3) 

o 
In practice this means that a coordinate x 

Then 

may be chosen such that 

ds 2 = g~9(xl,x2,x3) dx~dx ~. (5) 

Con~on examples occur when the metric is stationary, in which case the Killing vector 

v is timelike, when the metric has axial symmetry (and is invariant under the coordin- 

Z = Bl3x ° , g~v,xo = 0. (4) 
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ate transformation ~ ÷ ~ +constant where ~ is the usual polar angular coordinate and 

v = ~/~), or when the geometry has the same cross section for all points on one co- 

ordinate axis, say the z-axis (and the metric is thus invariant under z ÷ z + constant 

and v = ~/~z). 

However, not even the assumption of two conE~uting Killing vectors is enough to 

allow for the remaining, simplified, partial differential equations to be solved [i]. 

Other assumptions on the metric for a given T may be that the Weyl tensor belongs 

to a particular Petrov type, that the metric has some special form, and so on. In 

some of these special cases the equations may be fully integrated; for example, Kin- 

nersley [2] found all vacuum metrics for which the Weyl tensor is t~e D; but in gen- 

eral soma particular assumption is insufficient to allow for such full integration. 

The question then arises as to what other kinds of assumptions on the metric 

tensor may be made which will help in the search for exact solutions of Einstein's 

equations or even will help in the understanding of other areas of General Relativity. 

One other type of assumption is that there exist symmetries such as homothetic motions, 

conformal motions, curvature collineations as discussed, for example, by Katzin, et 

al [3]. Some properties of these symmetries, all generalisations of Killing motions, 

are discussed briefly here. Another type of assumption would be the existence of a 

second or higher order Killing tensor rather than that of a Killing vector (which is 

a first order Killing tensor). Killing tensors yield constants of motion, just like 

Killing vectors do, and enable, for example, the separation of the Hamilton-Jacobi 

equation in most type D vacuum solutions, in particular the Kerr-Newman solution [4]. 

However, Killing tensors are not yet easily handled and the assumption of the exis- 

tence of one does not necessarily make the equations easy to handle. 

II HOMOTHETIC MOTIONS 

Perhaps the simplest generalisation of a Killing motion is a homothetic one; in 

this case v satisfies 

where ~ is a constant. If ~ is an arbitrary scalar function, then v is termed a con- 

formal vector field. Collinson and French [5] showed that in a non-flat empty space- 

time a confo~l motion must be a homo~etic one, unless the spacetime is type N with 

a hy)rsurface or~ogonal (twistfree) repeated principal null congruence. But such 

solutions are well known; thus in vacuum if we are to use these symmetries to inte- 

grate the field equations to obtain new solutions, there is no need to consider the 

possibility of conformal motions with ~ non-constant. 
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For a homothetic motion, a coordinate x O can be chosen such that 

Z = ~/~x°, g~9,x ° = ~g~9 (7) 

in which case the line element can be written as 

o . 1 2 3 dx~dx ~ ds 2 = e ~x h lx ,x ,x ) . (8) 

Often this form is not the most useful; for example, one common metric which admits a 

homothetic motion is the Einstein-de Sitter cosmological one for which 

ds 2 = -dt 2 + t4/3(dx 2 + dy 2 + dz 2) C9) 

in which case the homthetic vector is 

v = t~/~t + (1/3)(x~/~x + y~/~y + z~/~Z) (10) 

In this form all of the coordinates are scaled, under the action of (i0), though 

not all by the same amount. The geometry is mapped along the congruence of curves 

whose tangent vectors are v to one of the same "shape", but where lengths are changed 

by a fixed amount. Another obvious example of a homothetic motion is the mapping 

along the axis of symmetry of a cone such that the cross-sections remain of similar 

shape but increase or decrease in size. The word self-similar is often used to des- 

cribe a homothetic mapping. 

Halford and Kerr [6,7] have examined vacuum spactimes in which the Weyl tensor 

is algebraically special and which admit a homothetic motion. They have been able 

to integrate the field equations in cases which were not integrated before and thus 

were able to find new solutions. 

In cosmology the simplest models that have usually been studied are perfect fluid 

ones which are homogeneous in the sense that 3-dimensional spacelike hypersurfaces 

exist which are spanned by three spacelike Killing vectors K__i(i = l, 2, 3). Usually 

each of these Killing vectors is chosen to be orthogonal to the fluid flow vector u. 

If ~ . ~i ~ 0 for some i ,the model is said to be tilted [8]. Eardley [9] suggested 

that self-similar cosmologies should be studied in which the spacelike hypersurface 

be spanned by two Killing and one homothetic vector and set up basic equations and 

theory to do so. (Note that n homothetic vectors can be replaced by (n-l) Killing 

vectors and one homothetic one [9]). 
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However, McIntosh [i0] has shown that for a perfect fluid cosmology, with equa- 

tion of state other than p = U (pressure equal to energy density), if a homothetic 

vector is orthogonal to the fluid flow vector ~, then ~ of equation (6) is zero and 

the motion is a Killing one. Thus, Eardley's program does not yield any new models 

except in the tilted case (for p ~ U), in which case the equations are generally too 

hard to handle effectively. One way to look at a reason for this is to remember that 

a homothetic motion is essentially a scaling one, and that in "normal" coordinates v 

contains a t~/~t like term. This term will mean that u . v is not zero except in the 

tilted case. 

There are, however, some solutions of the perfect fluid case with p = U (or, 

equivalently, solutions of the vacut~m Jordan-Brans-Dicke scalar-tensor field equations) 

which have a three-dimensional homothetic group of spacelike vectors with the homothe- 

tic vector orthogonal to the fluid flow vector. These solutions were given by Wain- 

wright, et al '[ii] and the existence of the homothetic vector was shown by McIntosh 

[12]. Thus the result on homothetic motions in perfect fluid cosmologies mentioned 

above definitely only holds for p < ~. 

I feel that in many ways solutions with p = U are more similar to vacuum solutions 

than they are to other perfect fluid solutions. This is only my feeling and it is not 

something that can be qualified by rigorous statement. One area where this is true is 

in the generation of new solutions from old, where theorems for vacuum solutions can 

be easily generalised to this case ([13],[14],[15],[11]). 

The assumption of homothetic motions will thus enable some new exact solutions 

to be found, but will not produce vast new numbers of solutions. 

III OTHER SYMMETRIES 

It is important then to look at symmetries other than Killing and homothetic mot- 

ions in both vacuum and non-vacuum spacetimes in the search for exact solutions of 

Einstein's equations. As mentioned before, Katzin et al [3] discussed curvature col- 

lineations which exist when there is a vector v which satisfies 

L R~ = 0 (n) 
z ~8 

for some set of components of the Reimann tensor formed from the metric components g~. 

Curvature collineations are quite general in the sense that homothetic motions, special 

conformal motions and various other kinds of motions are all cUrvature collineations. 

(A conformal motion is a special conformal motion if ~ of (6) satisfies ~;~9 = 0; a 

general conformal motion, however, is not a curvature collineation.) A reasonable 

program would then seem to be to look for exact solutions with a curvature collinea- 
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tion. However, it will now be shown that almost always a curvature collineation is 

a special conformal motion and so unfortunately this program is not a very useful one. 

A number of theorems which restrict the class of non-trivial curvature collinea- 

tion will now be derived. 

Y/~eo~ I: A curvature collineation in a nonflat empty spacetime must be a homothe- 

tic motion, unless the spacetime has a type N Weyl tensor. 

Katzin et al [3] show that when (ii) holds, the Lie derivative of the identi- 

g~R i~8 + g~IR~x~8 = 0 (12) 

give that a necessary condition for a motion to be a curvature collineation is that 

h DRPla 8 + h IRP~(~8 : 0, (13) 

where 

h =kz%~ . (14) 

Collinson [16] shows that in nonflat vacuum, (13) imply that 

h = ~g~9 + e£ £ , (15) 

where ~ and ~ are scalars such that ~ = 0 except in type N spacetimes, in which case 

is the repeated principal null congruence of the Weyl tensor. Collinson and French 

[5] show that in non-type N empty spacetimes (with ~ = 0), ~ of (15) must necessarily 

be constant. Hence in these cases the motion must be homothetic. 

Note that Collinson [16] and Aichelburg [17] discuss pp wave solutions and show 

that these can admit non-trivial curvature collineations. It will be shown by Halford 

et al [18] that the other family of type N plane-fronted gravitational wave solutions, 

those of Kundt [19] with ~ ~ 0 (see also Pirani [20]) admit non-trivial curvature 

collineations. An interpretation of these motions will also be given in that paper. 

T~eorem ~. (Katzin et.al [3]) : The only non-trivial curvature collineations admitted 

by Einstein spacetimes, i.e. ones with Rp~ = 1/4 Rg~ ~ 0, are Killing motions. 
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Theorem $: The only non-trivial curvature collineations admitted by source-free Eins- 

tein-Maxwell spaces are special conformal motions, except possibly when the Maxwell 

field is non-null and the Weyl metric is type N or 0. 

Proof: Tariq and Tupper [21] showed that the conditions of the statement of the theorem 

meant that such a motion is a conformal one. But Katzin et.al [3] show that a special 

conformal motion is a curvature collineation while a general conformal one is not. 

Hence such curvature collineations must be special conformal motions. 

These three theorems suggest that curvature collineations may be almost always 

special conformal motions, but how can this be shown? 

Now Hlavat9 [22] and Ihrig [23] have shown that (12) is a very interesting equa- 

tion, for when examined purely algebraically it says that if the R~I~ 8 are the com- 

ponents of the Riemann tensor for a metric tensor with components g~ at a point, then 

g~ = ~g~ , (16) 

where ~ is an arbitrary scalar function, except where, in Ihrig's language, the Riemann 

tensor is not total at that point. The Riemann tensor is total at a point if the dim- 

ension of the holonomy group is equal to the dimension of the Lorentz group at that 

point; this occurs when the metric tensor does not have too much synUnetry. It occurs 

for almost all metrics. The cases in vacuum spacetimes when it does not happen were 

given by Goldberg and Kerr [24,25]. 

The following theorems then hold: 

Theorem 4: A Curvature collineation in a nonflat spacetime must be a special confor- 

mal motion except in a spacetime with a metric whose Riemann tensor is not total. 

PPoof: A necessary condition for a curvature collineation (ii) to hold is that (13) 

and (14) are satisfied. Now (13) imply from Hlavat9 and Ihrig's work that 

h 9 = #g~u (17) 

except where the Riemann tensor is not total. Also from Katzin et.al [3], a conformal 

motion can only be a curvature collineation if ~;~ = 0, i.e. it is a special confor- 

mal one. 

Theorem 5: A curvature collineation in a nonflat empty spacetime must be a homothe- 
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tic motion, unless the spacetime represents a plane-fronted gravitational wave. 

Proof: Goldberg and Kerr [4] show that the only type N vacuum solutions of Einstein's 

equations with a non-total Riemann tensor are the plane-fronted gravitational waves. 

This result together with Theorems 1 and 4 yields the above theorem. 

A fuller account of these theorems and a discussion of the theory together with 

examples will be given by McIntosh and Halford [26]. 

IV CONCLUSION 

The theorems in the last section which show that curvature collineations are 

almost always conformal motions are somewhat disappointing since they mean that the 

program of using curvature collineations (and indeed therefore many symmetries other 

than conformal motions) in the search for exact solution of Einstein's equations is 

not a very fruitful one. The relatively few spacetimes which have non-trivial cur- 

vature collineations are ones in general with lots of other symmetries or properties 

which mean that they are well known or probably easily found solutions. It is still 

interesting to see why such spacetimes have non-trivial curvature collineations and 

a discussion on this point will be published elsewhere. 

In the cosmological case it has been shown that Eardley's suggested examination of 

models with homothetic motions is not as useful as may be hoped because of the res- 

trictions on such motions as outlined in II. Thus, again, the program of looking at 

solutions with symmetries other than Killing ones is not quite as fruitful as may be 

hoped. 

On the other hand, many authors when writing about symmetries only seem to think 

in terms of isometries, and so it must be stressed that it is important to think in 

wider terms and examine the role of other symmetries. There are still many useful 

and interesting resu]~ts using such syrmmetries waiting to be found! 
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NAKED SINGULARITIES 
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When I began work on general relativity in 1961, ostensibly on the topic of gravi- 

tational radiation, I could have hardly imagined that within twenty years I would be 

attending a conference on this very topic, in Perth of all places, and where concepts 

like cryogenic bars, Millijanskys, and Quantum Non-demolition would be vigorously dis- 

cussed. In those days the study of gravitational waves was almost entirely the province 

of mathematicians. One knew that Joseph Weber had begun his remarkable experiments 

to observe the phenomenon, but none of us could imagine why anyone should go to the 

trouble since it was clear to the theorists that no device within the technology of 

the day could conceivably detect the low fluxes which might be expected. Few of us 

at this stage had the foresight to conceive of the extreme relativistic situations 

which might lead to sizable fluxes of gravitational radiation. Yet already the writ- 

ing was on the wall, had we only cared to read it. 

One year earlier Kruskal [i] had pointed out a remarkable coordinate system for 

the Schwarzschild solution which indicated that it was possible to describe space- 

time beyond the r=2m "singularity" (incidentally the same coordinate system was noticed 

almost simultaneously by my father George Szekeres [2] but unfortunately he buried 

the result in anobscure Hungarian journal - a great pity because his paper largely 

anticipated the emphasis on the structure of singularities in general relativity which 

was to be followed up so actively several years later). Amazingly, however, few of 

us in England paid much attention to Kruskal's discovery. So poor was our grasp of 

the mathematically correct notion of a manifold that we still engaged in futile argu- 

ments about the reality or otherwise of the "Schwarzschild singularity". The person 

to grasp the point and appreciate fully its physical significance was J.A. Wheeler. 

He was probably responsible at the time for the term "black hole" which eventually 

became the popular one for describing the situation representing such a completely 

collapsed object. 

In England the idea was eventually taken up hy Roger Penrose [3] who suggested 

the concept of a trapped surface as a ~riterion for recognising a region of space- 

time representing a black hole. He gave some general and rather physical arguments 

why such trapped surfaces should be expected to arise in any reasonable collapse situ- 

ation (not just perfectly spherical collapses) and began work on some remarkable and 

very dee~ theorems, which he brought to fruition with Stephen Hawking over the next 
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few years [4], showing that trapped surfaces invariably heralded the onset of singu- 

larities of the space-time. The singularities predicted by these theorems are however 

hard to describe in detail, being only categorized by the necessary termination of 

some causal geodesics. Presumably they indicate a region where classical general rela- 

tivity must give way to some other (perhaps quantized) theory. However, they always 

occur after the formation of a trapped surface and are thus expected to be hidden from 

view by an event horizon. This leads then to the question whether the Penrose-Hawking 

picture is in any sense canonical. 

Are the singularities of general relativity always hidden from view, clothed by 

the event horizon of black hole, or are there realistic collapses which might result 

in naked singularities with null geodesics emanating from them which can escape to 

observers at infinity? The elegance of Penrose's discussion led him to postulate the 

hypothesis of "cosmic censorship", that given a reasonable equation of state the latter 

could never happen. The hypothesis is hard, if not impossible, to formulate precisely 

because of the difficulty of specifying what is a "reasonable" equation of state. I 

would like here to explore the contrary notion, that naked singularities may be present 

in the Universe, and what we might expect to see if we were to "look" at them. I will 

do this by discussing a number of case studies and indicate what problems appear to 

arise in them. 

I THE SCHWARZSCHILD METRIC 

This is the standard example from which all discussion of black holes start. 

standard coordinates the metric is 

ds 2 = (l-2m/r)dt 2 - (l_2m/r)-idr 2 _ r2(d@ 2 + sin2@ d~2). 

I n  

( i )  

r=2m is apparently a singularity, but further analysis shows this to be a spurious co- 

Infalling timelike 

ordinate effect. If one compares radially 

infalling timelike geodesics (possibly the 

boundary of a collapsing star or dust cloud), 

they appear in these coordinates never to get 

to r=2m but only to asymptote towards it (Fig. 

i). This hovering effect vanishes entirely, 

however, if one goes to a proper time coordin- 

ate attached to the geodesics. The simplest 

way of doing this is to set 

1- (2m/r) ½ 
T = -t+(8mr) ½ - 2m log 

1 + (2m/r) ½ 

Fig. i. Schwarzschild Metric 
in Usual Coordinates R = T + (2r3/9m)%. 
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The curves R = const, are just the marginally bound geodesics coming in from infinity. 

while T is the proper time parameter as measured along these curves from a convenient 

spacelike reference curve (T=0) orthogonal to the geodesics. The idea is very similar 

to the adoption of comoving coordinates in cosmological models. Since there is pre- 

cisely one such geodesic through every point (t,r) with r > 2m the parameters T and 

R serve as coordinates for this region of Schwarzschild space (of course it is under- 

stood that we leave the angular coordinates 8 and ~ untouched). However, the new co- 

ordinates cover a larger space than before since the metric becomes 

ds2--dT2-(4m/3) 2/3(r-T)-2/3dR2-(9m/2)2/3(R-T)4/3(d@2+sin2@d~ 2) (2) 

and shows no irregularity at r = 2m which becomes the 

r=0 

r=2m 

Fig. 2. Schwarzshild Metric in 
in Comoving Coordinates 2-sphere (angles 8 and ~ are 

suppressed in the diagram) from which both the ingoing and outgoing null rays have a 

tendency to converge. 

line, R = T + 4m/3 (Fig. 2). 

Problems only arise along the 

line, R =T, corresponding to 

the old r = 0, where an unavoid- 

able singularity occurs, inva- 

riants of the curvature tensor 

becoming infinite there. How- 

ever, this singularity is never 

visible to a distant observer 

at r = const. >> 2m since the 

light cones compress in such a 

way that no (future-pointing) 

null geodesics can cross the 

line r = 2m from any point in- 

side the strip-like region 0 < 

r < 2m. In fact any point (r,t) 

inside this region is a trapped 

surface since it represents a 

The metric can be regarded as the exterior of a collapsing dust cloud as was shown 

by Oppenheimer and Snyder [5]. Essentially they connected it across R = 0 with a por- 

tion - R ~ R ~ 0 of the time-reversed Einstein-deSitter Universe given here with a 
o 

displaced origin of the radial coordinate R (Fig. 3) 

ds 2 = dT 2 - (-T) 4/3 (dR 2 + (R + R )2 (d82 + sin28 d~2)). (3) 
o 
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r=0 

r=2m 

R = - R °  . . . . . . . . . . . . . . . .  - ~ R 

.... III-II-II"Y..---- / 
IT I ~ tl~" L " ' Li,I'I,"~/ 

, LfiIIII"-- 7 
II I//11 

Fig. 3. Oppenheimer-Snyder Solution 

In order to match up the angular 

parts of metrics (2) and (3) it 

is necessary to have m = 2R~/9 

which is precisely the mass of 

the matched portion of the Ein- 

stein-de Sitter universe. Even 

then it can be seen that the mat- 

ching of the gRR component is not 

continuous, but a coordinate trans- 

formation in (3) can be performed 

to make the metric and its first 

derivatives continuous across 

R = 0 in conformity with the Lich- 

nerowicz conditions [6]. 

II WEYLMETRICS 

The next exact vacuum solutions after Schwarzschild were discovered by Weyl i7]. 

He showed that the general static axi-symmetric solution can be brought to the form 

21 - e 2 (~-~) 2 -2~ ds 2 = e dt 2 (dr 2 + dz 2) - r e d~ 2 (4) 

where l(r,z) satisfies the 3-dimensional Laplace equation 

72~ _ ~ + ~ + r -I ~ = 0. 
rr zz r 

(5) 

The function ~(r,z) ~atisfies a pair of differential equations which can always be 

integrated if I satisfies (5). The curious thing about these solutions is that (5) 

is precisely the Newtonian gravitational potential equation, so that there is in fact 

a i-i correspondence between Newtonian and general relativistic solutions in the sta- 

tic axi-s!nmnetric case. Here however the analogy ends. By rights the monopole solu- 

tion of (5) should correspond to Schwarzschild. However if one solves the V-equation 

one finds 

= -m/R, ~ = -m2r2/2R 4 [R (r2+z2) ½] 

commonly known as the Curzon solution [8] which has a naked singularity at R = 0. In 

fact if one attempts to force Schwarzschild's metric (i) into Weyl's coordinates (4), 
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one finds that I represents the potential for a source consisting of a uniform rod of 

length 2m lying along the z-axis. The apparent singularity of the metric along this 

rod is spurious, corresponding to the original horizon situation on r = 2m. This fea- 

ture only occurs for rods whose length is precisely twice their mass (units, of course, 

such that G = c = i). Clearly the Weyl coordinates, while roughly Euclidean at large 

distances, badly distort the spacetime near the singularities. 

Another point of curiosity is the apparent linearity of (5). From the Newtonian 

point of view one can just add any number of particles along the axis, since there 

are no equations of motion inherent in the Newtonian field equations, and thus obtain 

a static multibody solution for general relativity. This appears to have been first 

pointed out by Silberstein [9] who considered two equal Curzon particles located at 

z = ± a on the axis. The error was detected by Einstein and Rosen [i0] who pointed 

out that one experienced global problems in the integration of the ~-equations. For 

regularity one needs ~ = 0 along the z-axis but in Silberstein's solution this is impos- 

sible to achieve. A "strut" of singularity 9 ~ 0 would have to appear on the stretch 

of z-axis between the two particles. This is a more subtle type of singularity where 

no irregularities in the curvature tensor appear, similar to the situation at the apex 

of a cone. In fact the strut may be removed if suitable quadrupole moments are added 

to the Curzon particles [ii], and apparently general relativity does allow such static 

two body solutions although it is unlikely that the singularities could be covered 

over with "realistic" matter (e.g. having density everywhere non-negative and/or pres- 

sures less than density). 

Need we be concerned about solutions such as Curzon's? Can they ever be the end 

point of a physical collapse? Israel's theorem [12] would indicate not, at least if 

a regular event horizon forms. But perhaps collapse could proceed in such a way that 

no horizon forms. In particular if the matter distribution is irregular enough that 

equipotential surfaces are not topologically spherical (a conunonly occurring phenome- 

non in electrostatics) we have very little to guide us on the eventual fate of the 

system. 

Another school of thought would have it that all solutions of Einstein's equations 

are potentially of interest. For, what criteria eliminate one class of solutions in 

favour of another class? From this point of view a Curzon particle is as feasible a 

physical object as a Schwarzschild particle. It then pays us to look a little more 

closely at the naked singularity residing at R = 0 and examine its consequences for 

an observer at large distances. 

The best way of exploring a space-time singularity is to consider geodesics approa- 

ching it. This was done a few years ago for the Curzon solution [13] with some sur- 
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prising results. When the equations for null geodesics entering R = 0 were analysed 

it turned out that geodesics could not approach from arbitrary directions in the z - r 

plane. In the asymptotic limit all geodesics, other than those coming in along the 

plane z = 0, made their final approach along the z-axis. Now it had already been noted 

[14] that along this direction, and this direction alone, invariants of the Riemann 

tensor such as R R pMpO tended to zero instead of infinity. This makes one sus- 
PuPO 

picious that along infalling geodesics the metric wants to behave reularly, and indeed 

if one adopts comoving coordinates along these geodesics just as was donefor Schwarzs- 

child in I (above) the singularity opens out into a great flat plane through which the 

geodesics can pass on unscathed to the "other side". Although R = 0 looks at first 

sight like a point singularity, it seems to be a truer picture that it is in fact an 

infinitely large ring, madly compressed by the extreme curvature of space into a van- 

ishingly small volume from the point of view of an observer at infinity, through which 

the geodesics may thread. What lies on the other side of the ring is also not clear. 

The junction is C but not analytic and even allows Minkowski space to lie ahead of 

the ingoing particles. The most logical way seems to be to join the top half z > 0 

with the bottom half z < 0 of Curzon space-time across this flat sheet, but an alter- 

native possibility is a multi-sheeted structure to the space-time, different "universes" 

being attached to each other across Curzon singularities much as in the manner of a 

Riemann surface. 

Counterintuitive as this example is it emphasizes the wealth of topological pos- 

sibilities opened up by Einstein's equations. In particular the "nakedness" of the 

R = 0 singularity appears in a milder light. The observer would have to station him- 

self exactly in the z = 0 plane in order to "see" it (i.e. receive a null geodesic 

from it). Only a set of measure zero among possible geodesics can actually approach 

the singularity. Quantum effects could wipe out such a singularity as being physically 

invisible. 

III DUST COLLAPSES 

The Oppenheimer-Snyder collapse discussed in I is a rather special situation con- 

sisting of a ball of pressure-free matter of uniform density. It would be nice to 

have examples of a much more general kind. Most known solutions representing collapses 

of a dust cloud can be expressed by a metric of the form 

ds 2 = dt 2 _ X 2 dr 2 _ y2(dx2 + dy 2) (6) 

with 

GpM = p upu , up = (i,0,0,0). 
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In fact the general solution (X and Y arbitrary functions of all four variables t,r, 

x,y) of this kind have been found [15]. The most interesting from the point of view 

of collapse are what I have termed quasi-spherical and are given by 

Y = ~(r,t)/P(r,x,Y) , X = PY~/W(r) (7) 

where 

P = a(r) (x 2 + y2) + 2bl(r) x + 2b2(r)y + c(r) (8) 

and 

~2 = W 2 - 1 + S(r)/# (9) 

(" E ~/~t, " E ~/~r). W(r) and S(r) are arbitrary functions of r (although allowed 

arbitrary coordinates transformations of the "radial" coordinate r remove one degree 

of freedom here), and (9) is a kind of generalized Friedmann equation for ~. The only 

other restriction is on the functions a(r), bl(r), b2(r) and c(r) Which must satisfy 

the identity 

2 2 
ac - b I - b 2 = 1/4. (i0) 

The density is given by 

p : (PS" - 3SP')/p3wxY 2. ( l l )  

In the case where a, bl, b 2 and c are constants subjects to (i0), the solutions 

reduce to earlier spherically symmetric collapse situations of Tolman [16] and Bondi 

[17]. Angular coordinates are reconstructed from the canonical case a = c = ½, bl=b2=0 

by setting 

H x + iy = e i~ cot½@ , 

whence 

(dx 2 + dy2)/P = d@ 2 + sin2@ d~ 2. 

The simplest case of all is where the dust particles are marginally bound. This arises 

if we set 

W(r) = i, S(r) = 4r3/9 
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and the solution of (9) gives 

= r(t - t (r)) 2/3 
o 

where to(r) is an arbitrary function. 

where 

and 

The metric (6) then has the form 

ds 2 = dt 2 - (t - to(r)) -2/3 (t - tl(r))2 dr 2 

- r2(t - t (r)) 4/3 (d@ 2 + sin2@ d~ 2) 
o 

2 t o (r) tl(r) = to(r) + ~ r 

(12) 

(13) 

4 

p = 4/3 (t-t ° (r)) (t-t l(r) ) 

/tL=tH(r) 

P 

Fig. 4. Collapsing Shell 

of Matter 

(14) 

The case T o = const, implies tl=t O by (13) 

and the solution reduces to the Einstein- 

de Sitter cosmology. In the general case 

we see that the density (14) has two sin- 

gularities. If we consider an initial 

spherical distribution of matter p(r) at 

some time t = const. < min (to(r), tl(r)) 

then the direction of t increasing rep- 

resents a collapse situation. Each par- 

ticle of the dust cloud (r = const.) even- 

tually reaches a singularity along to(r) 

or tl(r) depending on which of these is 

less (Fig. 4). The general conclusions 

are as follows. 

If the t (r) singularity is reached 
o 

before tl(r) then the singularity is hid- 

den from the view of a distant observer 

by an event horizon. This always occurs 

if initially the density p(r) is decreas- 

ing outwards for r k 0. If the density 

increases strongly enough outwards in 

some region (for example the collapse 
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of a (quasi-) spherical shell) then tl(r~ < to(r) and a locally naked singularity 

occurs. By the latter is meant that the singularity is visible to neighbouring infal- 

ling particles. Conditions for a globally naked singularity (i.e. visible at infi- 

nity) are hard to specify since they involve complete integration of null geodesic 

equations, but will certainly occur in some cases [18]. In Fig. 4 an initial density 

distribution Q(r) with a shell-like region is plotted in the lower diagram. In the 

upper diagram which depicts the evolution of this distribution the stretch AB of tl- 

singularity is globally naked, BC is locally naked, while the t (r) stretch to the 
o 

right of C is hidden by the horizon t = tH(r). 

All these conclusions apply equally to spherical or quasi-spherical collapses 

[19] thus indicating that the formation of black holes is by no means a characteris- 

tic of the high symmetry of purely spherical collapse as has been suggested at various 

times. However, the diagram does indicate that the naked portion~ (AB in Fig. 4) of 

the collapse singularity are only briefly exposed, soon to be swallowed up by the event 

horizon as a whole. This leads one to postulate that some form of asymptotic cosmic 

censorship may, in general, be valid for the collapse of any finite mass whatsoever. 

Whether these tl(r) singularities responsible for any naked singularities are only 

"shell-crossings" and unstable to the introduction of realistic pressures remains de- 

bateable. Some further considerations have been made [18] which suggest thatthe naked 

singularity does in fact persist when pressures are included. 

IV COSMOLOGICAL SINGULARITIES 

Cosmological situations essentially involve reversing the arrow of time in the 

above collapse discussions. Alternatively we consider the region t > MaX(to(r), tl(r)) 

in the situations such as depicted in Fig. 4. The simplest case is the Einstein-de 

Sitter model 

ds 2 = dt 2 _ t 4/3 (dr 2 + r2(d@ 2 + sin2@ d~2)), 

p = 4/3t 2. 

Here the origin t = 0 of the big bang is most certainly a naked singualrity in that 

it is visible for all time (Fig. 5a). What saves us is the fact that in some sense 

it is a "soft" singularity, all light originating at time t = 0 being infinitely red- 

shifted. This manifests itself in the cooling of the initial fireball to its current 

black body temperature of 2.7°K. This picture is drastically altered however if we 

consider departures from homogeneity, such as putting in a non-constant to(r) in the 

Bondi-Tolman model of (12). 

If one puts in a "hump" singularity such as 
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Fig. 5a. FriedmannModels 
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lines 
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Fig. 5b. Hump Singularity 

t=t t ( r )  

/ 

Fig. 5c. Trough Singularity 

t (r) = i/(i + r 2) 
o 

the situation is as depicted in Fig. 

5b. The most dramatic change is that 

null geodesics arising at t = to(r) are 

no longer initially horizontal as in 

the homogeneous case, but are initially 

vertical. The effect of this is that 

photons emitted there are infinitely 

blue-shifted at later times. The local 

Hubble constant Az/~r is - ~ there. It 

then increases until it reaches zero 

along the curve t = tcrit (r), after 

which it is positive and increasing 

(redshifts), asymptotically attaining 

the usual Einstein-de Sitter value. 

However the initial blue-shift is a 

cause for concern, since its effects 

on the black body spectrum (frequently 

extrapolated in cosmological considera- 

tions to the first second or earlier 

of the universe) could be drastic. The 

situation is particularly critical since 

the effect has little to do with the 

magnitude of the hump - even at the 

outer reaches r >> 1 the effect is pre- 

sent, and indicates there is something 

intrinsically unstable in the initial 

infinite redshift of the Robertson- 

Walker models. 

The reverse situation can also 

occur if the sides of the hump are steep 

enough, for example, in the case of a 

time-reversed Oppenheimer-Snyder solu- 

tion (white hole). In this case the 

emergent particles meet a bluesheet of 

photons which have forever been trying 

to enter r = 2m in Fig. 3. [6]. Eardley 

[20] has pointed out that the pressure 

of such a bluesheet may convert the 
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white hole back into a black hole. 

The situation for a "trough" singularity such as 

t (r) = - i/(i + r 2) 
o 

is shown in Fig. 5c. In this case particles arise from t = tl(r), and this time the 

null geodesics are initially horizontal again. However, because of the timelike nature 

of the singularity line (i.e. it cuts through the null cone in contrast to the Fried- 

mann case where it is tangential) this results in a finite limiting redshift and would 

not be sufficient to shift away the energy in an initially infinite or large and finite 

energy photon. In this case some regions of the singularity are never visible to some 

observers, e.g. those regions of the trough from which null geodesics collide with the 

other side, or those regions over the lip of the singularity far to the left of the 

diagram. One might be led to contemplate a universe with initial conditions so chaotic 

that no parts of the initial singularity are visible after some time because all null 

geodesics have collided with other parts of the singularity. 

All in all a detailed quantum-mechanical study of the geometrical optics in such 

inhomogeneous models would be well worth the effort to understand what the future of 

radiation is in these models and to decide whether the singularities are really "hard" 

or "soft" from a physical point of view. 
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